Dynamic Execution Framework
DEF

User's Guide
Dec 12,2014

© 2011 - 2014 — Joseph M. Morgan
joe@javajoemorgan.com

mailto:joe@javajoemorgan.com

Table of Contents

IEEOAUCTION. ...ttt et s h et ea e e bt et e st e s bt e bt e et e e bt et e eatesbee bt eneeenseeennnean 4
Chapter 1 — GEt GOINZ NOW ! ...cciiiieiiie ettt etee et e et e et eeeaaeestaeesssaeessseeesssaeesssaeenssaaessssneeaaennes 7
PrimAry USE CaS@S. .. uueeuieiuiieiieeiieiieetterite et etteete e ttesebeesseeesseesstessseenseeesseenssesnseensseenseenssesnseenseeanseensns 7
Using ASynchMethOAINVOKET............ooiiiiiiiiieiicceeee ettt e s e et e e saeeessaeenens 7
USING MEthOAINVOKET......coouiiiiiiiieeiieie ettt ettt ettt esiae et eeesbeenbeessbeenseenaaeenseennns 8
USING TRIEAAULIIIEY ... eeeiiiieiiieeeiie ettt ettt e et e e et e e et eessbeeesaseeessseeessseeesseeesseessseeeennnns 9
Handling Multiple Parameter PaSSINg..........cceviiiiiiiiiiiiieiieeiieciee ettt etee e steeseevaeeenes 10
Obtaining REtUIN VAIUES........cccuiiiiiiieciie ettt et e et e et e e et e e entaeesnbaeesnsaaennseaeeas 11
Dealing with Methods Receiving Variable Argument LiSts.........ccceeevieriieriienieeiiieniecieeiiee e 12
FUNCHION POINEEIS.....eiiiiiiiiiieiie ettt e e et e e st e e aaeesabeeessseeensaeeensseesnssaesnseaeens 13
SUIMIMIATYttt ettt e ettt e sttt e ettt e e bt e e sasaeesataeeasseeensbeeenbeeeesennnssaeeessannssaeeens 15
Chapter 2 — Additional Features of the DEF...........cccooiiiiiiiiiiieee et 16
Canceling an ASYNCRIONOUS PrOCESS.cccuiiiiieiiiiiieciieitesie ettt et e e ebeesseeeeseeeennees 16
Restarting an ASyNChIonOUS PTOCESS......ccuviiiiiiiiiie ettt et e e sae e e seaeeeaaeaeeas 17
USING INVOCAIONLISIENETcuviiiieeiiieiieeiie ettt ettt et et e st e et e ssaeestaessaeesssaeesnssaeeensaaeenns 18
Creating @ DYNaAmIC PrOCESS.cooiuiiiiiiiiiiie ettt ettt e et e e s tae e s teeesataeessaeeenssaeessaeenssaenns 20
Using Timer, TimerListener and TIMErEVENL.............cccciiiiiiiiiiiiiiiiciece e 23
Using AsynchMethodINVOKET @S @ TIMET........ccueiiiuiieeiiiieiiie ettt eeve e aaeeseae e s eeaaeaae e 24
SUIMIMIATYttt ettt e ettt e sttt e ettt e s bt e e sasaeesataeessseeesbeeensbeeeesennnssaeeessnnnnsneeens 24
Chapter 3 — BEanS SUPPOTL.....cccuuieeiuiieeiiieetieeeieeeeieeeeteeesteeestaeeessaeesssbeeesseesseeesssaeeassasesssesessseesssseeenssees 26
Creating INSTANCES. .. .cveieiiieiieeie ettt ettt ettt et e et e et e e abe e teeeabe e saeense e saesnseesaeassseeeassseeeansseesnsses 26
Obtaining SImMple Property ValUES.........cccuiiiiiieiiiiciiee et e e e e eaaaa e e e e nenes 26
Obtaining Non Bean-Compliant ValUes...........ccceeriiiiiiiiiiiiieiecie ettt e e 27
Obtaining Indexed Values — Values of Arrays Or LiStS......ccceeciieiiiieeiiieiiieceiee et 28
ACCeSSING NESIEA VAIUES.oeiiiiiieiieiiecieece ettt ettt et e sbe et e ssaeebeessbeesseessseeeensaeens 30
USING EXPIESSIONS.uviieiiiieiiiieeeiieeeittie ettt e e stteeetteesteeessteeassseeesseeasseeassaeassaesssseessseeessseeesassssseeesannes 30
Other BeanService MEthOdS.cuoiiiiiiiiiiiieeee ettt sttt e 31
Setting Property VAIUES........c.uii ittt et e ee e e et e e sbe e e e e ennsaaaee e e nnnnes 32
USING BEANCOMPATALOT......c..eeiiieiiieiieeiieeieestte et eseteeteestteebeessaesseesseeesseessaesnseesseessseensaeessssesssnseeesns 33
USING ANYOD]ECICOMPATALOTcutieeiiiieeieeestieesteeesteeeseeeessteesseeesseeesseeessseeessseeessseesssseesessssssseeeans 35
SUIMIMIATYttt ettt e ettt e sttt e ettt e s bt e e sasaeesataeessseeesbeeensbeeeesennnssaeeessnnnnsneeens 36
Chapter 4 — Collections EXTENSIONS.uiiiiieeiiieeiiieeiiieeeieeeeieeeeieeeseaeeeseaeeessaeessaeesseeesssssseeeessnssseeeaeens 37
USING ColleCtiONCOMPATALOT........eciuiieiieriieeiieeiieeitteeteeteeeteesteesteesseessseeseessseesseessseenseessseesseessseensseens 37
USING COlIECTION SEIVICES. . .uiiiiiriieiiiieeiiieeitieeeitteeeitteesteeesreeesseeesseeessseesssseesssseesnsseesssseeesesssssseeesannes 38
COlIECtIONSELECTOTttt ettt et sb et et e bt e e este s b e e et e e et e e nnneennee 38
USING INStANCESEIECTOT. ... viiieiiieeiieecite ettt ettt e et e e et e e et e e sbeeesabeeessseeeasseessseeesnnsnneeeeannes 40
EQUALSSEIECTOT. ...ttt ettt ettt e et estaeebeesaaeesbeessbe et e e ssbeenseensbeeeenbeeeenes 41
DI TENCESEIECTOT. ...ttt ettt e b e et e bt e st e e bt e sateebeesanbeeenans 42
PrOPertyValUESEIECON.iiiiiiiieiie ettt ettt ettt et e st e e aeesabeeseesnseeeensaeeeennes 43
INAEXSEIECTOT. ...ttt ettt et e st et e s ab e e bt e sbbeeabeesaeeenbeesnbeeennes 44
RO ZEX S CIECTON. ... ettt ettt ettt ettt e et e et e sabeebeeesbeesaeeabeeseeesseenseeenseensaesnseenseennsaennns 45
(10 1 (Te 8 0] 01 25 ST L 110 SRS USSRt 45
TRICAAEXECULOTeitiiieieeeeeee ettt b et e b ettt st e bt et s et e neteeseteesnteeenne 47
IMEthOAEXECULOT.......ciiiiiiie ettt et e e st e e ete e e saaeestaeeesabeesnsseesssaaesssaeessseeesanssssnaeeeannes 48
A Use Case for Combining Selectors and EXECULOTS.........cccviervieriiiiiiiiiieiecieeiee et 49

Property Selectors and Iterators..........eeeeuiieeiuiiiiiie ettt e e e e e e e etraeeeeennnnnas 51

|38 (0] 1S A 7 LT 210 U PPSPPPRPN 51
Aggregators — The ColleCtioNAZEI@ZALOT.........ccuieiiieiieeiieeiieeieeite ettt e ete et e saeeteesateeesnreeeesaeeens 52
o2 | OO OO SO P OO T ST PP UTOPRRPROPON 55
COllECHIONULIIIEY ...ttt ettt ettt et e st e et e e st e e b e e s saeeabeesseeenseessbeenseenseesnnseeeennses 55
SUINIMATY ...ttt ettt e e ettt e e ettt e e e aeaeeeeenaateeeesasteeeeenssaeesansssstaneeeaaaaasesessnnnnnnnes 58
Chapter 5 — Additional Beans Classes..........ceecuieruiieiiieriieeiiieiieeiteesite et esite et estesteesieeessebeeessasaeessnbeeeanes 59
TIUACX ettt et h e et h e e e bttt e b ettt e bt e et e e bt e e b e e eaeee 59
BEaANINAEKET.......eeuiiiiiiiiieie ettt ettt et stt e et e st e et e e he e e bt e e taeebeenateenbeessaeebeenaaeens 60
BeanPropertyLOader........c.uiiiiiieeiieece e s e et e e e nnraeenaaaeeas 61
BeanPropertyIMaP.....ccouuiiiiieeiiie ettt ettt e et e et e et e et e e e tteesaraeee s 61
PropertieSBEANIMAD..........coiiiiiiiiieeciee ettt e e e et e et e e et eeettraeeeennnanaeeeaanns 62
COOKIEBEANIMAD. ... eiiiieiiiieiie ettt ettt ettt et e st e et esateeabeesaeeenbeessaeenseesseeenseenseesnseensaeennseeesnnses 62
INItParameterBeanIMap.ccccuiiieiiiecieeeeie ettt et et e et e e e ateeennraeenaaaeeas 63
HttpRequestParameterBeanMap.............ooouiiiiiiiiiiiiiiiecieeceeee ettt e e e e e e e 63
0010110 F2) oy 2 PP PUPPUPRRN 63
Chapter 6 — EVENt DEI@ZALES........coiiiiiiiiiieiie ettt ettt ettt st e st eebeessaeebaeeennaeeens 65
INETOAUCTION. ...ttt et e ettt e et e e st e e s beeeesaee e abeeesseessseesnnseesnssaesnsseaeesansssnneesannnes 65
ADSITACtEVENTINVOKETeiiiiiiiieiie ettt ettt ettt e st e bt e s abe e teesnbeeseesnseesnee s 65
Property EVENtINVOKET.eiiiiiiieiie ettt e e st e e st e e s e e e e e nntbaaee e e nnnnas 67
PrOPEITYBINAET. ..ottt ettt e et e st e bt e et e et et e e e abeeeenraeeennes 68
D M 015 010 1N) SR PUPRSPRRPR 70
NaMEAPTOPETtYBINAETcoiiiiiiieiieiie ettt ettt st e et eeaae e bt e sabeenseesnseesanneans 71
SUINIMATY ...ttt e e ettt e e ettt e e st et e e e e aaeeeeesasbeeeeenssaeesenssstsaneeaeaaaesssesannnnnnnes 72
Chapter 7 — UL EVent DEIEZates.cc.eeiiiiiieiiieiieeieeieete ettt ettt site et seeeeseesaeeenseesnaesnseensseeeans 73
INETOAUCTION. ...ttt et e et e e et e e st e e e beeeesbee e abeeesseeesseesnsseeensseeansseaeesansssnneesennnes 73
ACHONEVENINVOKET.......eiiiiiiiieiiee ettt et e et esate e et ee e ennbeesensaaeenes 73
Chan@eEVENtINVOKETcooiiiiiiie e ettt e et e et e e s tee e s sseeesnseeessaeeenssseaeeeennnsnes 77
HEMEVENINVOKET.......iiiiiiiieie et ettt e st e et eeabeesseesnbeeenbaaeenes 79
ListSelectioNEVENtINVOKET.........c.oiiiiiiiiie ettt e e st e e st e e sbee e e e nnnaeeeeeennes 81
AbstractMaskedEVEeNtINVOKET..........cooiiiiiiiiie ettt sttt e e naae e e 82
ComponeNtEVENtINVOKET.......ccc.oiiiiiiiciie et e st e e aee e ssaeeesaaeensaaeens 82
ContaINETEVENTINVOKET........oiiiiiiiieiie ettt ettt et et s e ebee s b e e e b e e e enbbeeeensaeeeanneeas 86
FOCUSEVENEINVOKET.......tiiiiiiieiie et et e et e et e e e e e et e e entaeeensaeeensaaennsnaeens 88
HyperlinKEVENtINVOKETcc.oiiiiiiieiiieee et ettt et ettt e st eebeesebeeeenneaeenes 90
Internal FrameEvVentINVOKET.........coociiiiiie e et e et e e ebaeenaaeens 92
KEYEVENINVOKET.......eiiiiiiiieiieie ettt ettt e ettt et e st eesbeesseesabeesaeeenbeessaesnseenneaens 93
MOUSEEVENLINVOKET.......ooiiiiieiieeciie ettt et e e st e e e e esaaeeesnsaeaeesennnsaeeeeeannes 94
MoUSEMOtIONEVENTINVOKET......c.eiiiiiiiiiciieiieeie et ettt ettt e ebeessaessaesaaaens 96
Extending AbstractEventInvoker and AbstractMaskedEventInvoker...........ccccoeevvieeiiieniiieniiiieeeens 97
Chapter 8 — Things That GO WIONG.......cc.coiiiiiiiiiiiiie ettt ettt et site et e e ebaee e enneas 100
L0 107 5 1] SRS 100

Introduction

I began developing this API many years ago when I was doing consulting work with Java. At the time,
the only generally integrated asynchronous capabilities were built into Swing, the Ul API. I needed
asynchronous capabilities with every day programming, and wondered why the architects and
programmers at Sun who were responsible for Java didn't think beyond the box and had not provided
such a APIL.

This is the reason why this API came into existence. The aim was to create a simple, but powerful,
asynchronous and dynamic set of utilities useful both within the UI and non-UI environments. Another
goal was to remove the bloat and redundancy of having to create and start threads, and then figuring
out how and where to write a singleton run method when I just simply needed to be able to
asynchronously execute several methods of a third party API.

Sometime later, Sun released the Concurrency API, but by that time, I was well on my way to what I
continue to consider a much better asynchronous and dynamic set of tools. Though initially excited, I
soon realized that the Concurrency API continues the same process of relying very heavily on
implementations not belonging to the programming task at hand. This new API requires the creation of
bloated and semantically meaningless implementations of Runnable and callable to get the job done.
Other problems, such as the inability to restart a completed task, such as in the case of a FutureTask, is
also a problem with the Concurrency APIL.

So, I stopped converting to the Concurrency API, which is not something I generally do, by the way,
and resumed development of this set of utilities. [came to name this framework, the Dynamic
Execution Framework, or DEF. With this API, you will be able to again just write your app the way an
app should be written, without concerns about how you may later need to invoke methods
asynchronously. With these utilities, there is no need to implement interfaces or do anything out of the
ordinary. It allows you to simply focus on the goals of the application and the classes it contains and
needs.

What is the lesson we are all taught within Object Orientation? “A class is something that does one
thing and does one thing well.” Meeting the goals of this statement is not so easy when you start to
concern yourself over how methods of a class may need to be invoked asynchronously, or if methods of
a class need to invoke things dynamically. Do not read this to mean you should not write Java classes
and beans that are properly synchronized, you should, but that is the easy part. When using the DEF, in
fact, that's all you need to do!

There are many advantages to using the DEF over the facilities within the Concurrency API. First, you
never again will need to subclass Thread. Second, you never again will need to implement Runnable.
Third, you will soon be able to remove all out-of-place and off-topic “wrappers” and other code bloat
and simply invoke the methods you wish to invoke in a much more direct and meaningful way.
Asynchronous and dynamic invocations can occur at will, all without the need of a ThreadFactory, or
having to develop Runnable or Callable “wrappers” around methods that were not designed to be run
asynchronously, but may need to be.

Another problem with the threading model, as I see it, is having to wait on other threads, not knowing
if, when, they will ever complete, and having to establish locks, or write strange loops or implement

other “tricks” to get things working correctly. =~ Once you understand the idea of the
InvocationListener, and you see the much superior Timer with TimerEvent, and when you create
your first Java function pointer, you will be ecstatic!

In most cases, it takes a single line of code to asynchronously execute a method. Any method. Even
methods of third party classes. Even non-public methods (but respects rules when there are
SecurityManager restrictions). Even methods that take arguments! Even methods that take arguments
whose values should not be derived until the moment the method is called, even if the execution of the
method is delayed for an indeterminate period of time! This is also true of static methods.

For a much clearer demonstration for this use case, the examples in the Concurrency API
documentation of the Future interface require at least 12 lines of code just to get a search to run
asynchronously. Furthermore, it requires 3 class/interface references; one to ExecutorService,
another to Future, and an anonymous bloated implementation of callable. (Let's not get into how
bad of an idea I think anonymous classes are. In my opinion, they should be banned in exactly the
same way goto 18.)

In any case, rather than:

interface ArchiveSearcher { String search(String target); }
class App {
ExecutorService executor =
ArchiveSearcher searcher = ...
void showSearch(final String target)
throws InterruptedException {
Future<String> future
= executor.submit (new Callable<String> () {
public String call() {
return searcher.search(target);

Ph) g

displayOtherThings(); // do other things while searching
try A

displayText (future.get()); // use future
} catch (ExecutionException ex) { cleanup(); return; }

With this API, you only need:

AsynchMethodInvoker mi = new AsynchMethodInvoker (searcher, “search”, target);
displayOtherThings () ;
if (mi.hasCompleted()) displayText (mi.getReturnValue()):;

If you like the DEF in this context, you will love it within a U, such as within a Swing application.
The API includes a set of classes categorized as “EventInvokers”, and with them, you may never
again need to implement ActionListener, PropertyChangelListener, MouseListener,
KeyListener, ComponentListener, or any of the other commonly used event listening interfaces.
With usually a single line of code, you can direct the flow of execution to the exact place you want it
when the event occurs. No more interfaces! No more stub implementations! These are true event
delegates enabling you to create cleaner code.

I hope you enjoy using these tools. I have saved thousands of lines of code with these simple classes,

and I am certain you will thoroughly enjoy them too.

Please write with questions, suggestions, enhancement requests, bugs, typographical errors and other
concerns to joe(@javajoemorgan.com. Source code is available for a price. Please write for pricing.

mailto:joe@javajoemorgan.com

Chapter 1 — Get going now!

We'll start with the most commonly used classes and utilities and simple program examples of what
they do. Later in this manual, we will cover things in more detail. If you are anything like me, you
want to get going, rather than muddle through a bunch a techno gunk you can worry about later.

Primary Use Cases

There are two primary classes within this API: MethodInvoker and AsynchMethodInvoker. These
two classes form the basis of virtually everything else within this API. They do pretty much as they
are named, that is, they invoke methods. MethodInvoker gives you dynamic execution capabilities of
a target method. AsynchMethodInvoker extends this class to provide asynchronous invocation
capabilities. Both classes are essentially function pointers in Java, except that AsynchMethodInvoker
is designed to go ahead to kick off the target method asynchronously, either right now or after some
specified delay, whereas MethodInvoker invokes the method synchronously.

Let's get right to a program to show an example.

Using AsynchMethodInvoker

import com.jmorgan.lang.AsynchMethodInvoker;

public class SimpleAsynchExample {
public static void main (String[] args) {
// Invoke println later and print Hello World
new AsynchMethodInvoker (System.out, "println", "Hello World");
System.out.println ("Normal Println");

The above program asynchronously invokes the print1n method of the System's output stream passing
in the string “Hello wWorl1d” when invoked. To emphasize that the method is invoked in a separate
thread, we have a normal printin call. With a small change, we ensure the print1ln method isn't
invoked until 500 milliseconds later.

import com.jmorgan.lang.AsynchMethodInvoker;

public class SimpleAsynchExample {
public static void main (String[] args) {
// Invoke println 500 ms from now and print Hello World
new AsynchMethodInvoker (System.out, "println", "Hello World", 500);
System.out.println ("Normal Println");

}

So, as you can see, delaying an asynchronous invocation is just a few characters away from just
invoking asynchronously. In both cases, the target method is invoked using a dedicated thread, but one

is invoked at a later time.

Let's review the above code examples in a bit more detail, most specifically what the code does not
contain. Notice there is only one class reference, no interface implementations, no wrappers, no
subclasses of Thread, and no anonymous implementations! Just simple and direct code. In both
cases, the first parameter to AsynchMethodInvoker is a reference to an object. The second parameter
is a textual name of the method to invoke, in this case, the print1n method. The third parameter will
be passed into the print1n method. In the second example, the fourth parameter represents an amount
of time to wait, in milliseconds, before the method will be invoked.

Using MethodIinvoker

AsynchMethodInvoker's polite brother is MethodInvoker. MethodInvoker is very similar to use, but
instead of it automatically running the method in another thread, it requires you to explicitly run it via
the invoke method:

import com.jmorgan.lang.MethodInvoker;

public class SimpleDynamicExample {
public static void main(String[] args) {
MethodInvoker mi =
new MethodInvoker (System.out, "println", "Hello World");
mi.invoke () ;

The mechanism for using MethodInvoker is virtually identical to AsynchMethodInvoker except for
the need to explicitly tell the MethodInvoker instance to invoke it's method. There is no delayed
timing parameter for MethodInvoker, and MethodInvoker doesn't invoke the target method in its own
thread. MethodInvoker is somewhat like a function pointer, and we will show how to use it more
effectively in later examples.

The above example doesn't give the DEF much justice, because you are thinking that you can just
write:

System.out.println ("Hello World");

But, what if you want to invoke it asynchronously? You could do as so many do and write something
like this:

new Thread (new Runnable () {
public void run () {
System.out.println("Hello World");

}
}) .start () ;

The point is, when you do need to dynamically invoke a method, or you need something tantamount to
a function pointer, MethodInvoker becomes extremely useful. In day to day use, I use
AsynchMethodInvoker way more than MethodInvoker, but you will come to see the benefits of
having both.

Using ThreadUltility

I am making a quick reference to another class included within the DEF that I use frequently, but most
of you likely have a similar utility or method. This is the Threadutility class, which you will see in
the code samples. Basically, instead of:

try { Thread.sleep(1000); }
catch (InterruptedException e) { }

You will see:

ThreadUtility.sleep(1000);

Which is the same thing, but without the need for the try/catch. Saves a little bit of typing, but if you
write applications where you frequently sleep, a little bit of typing adds up quickly.

That isn't all Threadutility can do, though. Other methods of the Threadutility class are:
public static int getThreadCount();

Which returns the total number of threads the system has, at the moment. Be careful on this one, as
chances are better than not that this number has already changed by the time your program can
consume it. It is, nonetheless, a useful number for general monitoring.

public static int getThreadCount (ThreadGroup threadGroup) ;

This returns the total number of threads for the given ThreadGroup. Again, this count will more than
likely have changed before you can do much with the number.

public static void killThreads (String name) ;

As it sounds, the kil1Threads method kills all threads having a given name. This brings me to a
related point, too. When AsynchMethodInvoker creates the thread for invocation, the thread's name is
constructed from the name of the class of the target object combined with the name of the method
being invoked. Therefore, the name of the thread created for the invocation of this:

new AsynchMethodInvoker (System.out, "println", "Hello World");
Is:

java.io.PrintStream.println

I added this sometime back when I wrote my own internet search engine as a proof of concept for the
DEF. There is a little UI where you enter the starting page and a regular expression, then the thing goes
off searching. While doing so, it creates hundreds of threads, some are searching, some parsing pages
looking for links, others are reading pages, etc. I needed a way of stopping the process, which meant
killing anything running under specific names. It works like a charm! Maybe you can find a use for it
as well.

Handling Multiple Parameter Passing

Both AsynchMethodInvoker and MethodInvoker can pass parameters into their target method, but the
mechanism of doing so is a little bit different, mainly because AsynchMethodInvoker has an optional
delay:

import java.util.Calendar;
import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.MethodInvoker;

public class MultipleParamDynamicExample {
public static void main (String[] args) {
Calendar ¢ = Calendar.getInstance();

// Dynamically invoke one of the "set" methods of Calendar
MethodInvoker mi = new MethodInvoker (c, "set", 1998, Calendar.MARCH, 25);
mi.invoke () ;

System.out.println ("The Date After Dynamic Invocation Is: " + c.getTime());

// Dynamically and asynchronously invoke the same method, different date
AsynchMethodInvoker ami =
new AsynchMethodInvoker (c, "set",
new Object[] { 2000, Calendar.DECEMBER, 7 });

while (!ami.hasCompleted()) ThreadUtility.sleep(100);

System.out.println ("The Date After Asynchronous Invocation Is: " +
c.getTime()) ;

Let's first review the differences, and then the reason why. Note that MethodInvoker takes any number
of parameters following the name of the method. The signature of this constructor for MethodInvoker
is:

public MethodInvoker (Object object, String methodName, Object...arguments)

All of the parameters following the name of the target method will be passed into that method,
provided there is a method of that name and it receives the number and types of parameters passed. In
the above example we are invoking the set (int year, int month, int date) method of the
Calendar class. With MethodInvoker, we can just pass them in.

AsynchMethodInvoker, on the other hand, takes an optional delay, and so multiple parameters must be
handled differently, otherwise, it is impossible to know the difference between an integer intended as a
parameter to the target method and an integer intended as the delay. The signature of the constructor
used in the above example is:

public AsynchMethodInvoker (Object object, String methodName, Object[] arguments)

But the constructor to do the same thing with a delay is:

public AsynchMethodInvoker (Object object, String methodName, Object[] arguments,
int delay)

So, as you can see, if we had wanted to invoke the set method with a one second delay, it would have
looked like this, with the final integer indicating the delay, in milliseconds:

AsynchMethodInvoker ami = new AsynchMethodInvoker(c, "set",
new Object[] { 2000, Calendar.DECEMBER, 7 },
1000) ;

Obtaining Return Values

You can obtain the return value of the methods being invoked with both MethodInvoker and
AsynchMethodInvoker. MethodInvoker's invoke method returns the value returned by the target
object's target method.

Since AsynchMethodInvoker runs the method in a separate thread, we need a different way of getting
to the return value. First, we will use the hasCompleted method to determine if the method has been
invoked, and then we can use the getrReturnvalue method to get the actual value. Here is a code
example:

import java.util.Calendar;

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.MethodInvoker;
import com.jmorgan.util.ThreadUtility;

public class GettingReturnValuesExample {
public static void main(String[] args) {
Calendar c¢ = Calendar.getInstance();
c.set (1982, Calendar.MAY, 15);
MethodInvoker<Integer> mi =
new MethodInvoker<Integer>(c, "get", Calendar.DATE);
int date = mi.invoke () ;

System.out.println ("The date is: " + date);

AsynchMethodInvoker<Integer> ami =
new AsynchMethodInvoker<Integer>(c, "get", Calendar.MONTH, O0);

while (!ami.hasCompleted()) ThreadUtility.sleep(100);
int month = ami.getReturnValue();

System.out.println ("The month is: " + month);

One very important and interesting note on the example for AsynchMethodInvoker. When you need to
pass a single parameter, and that parameter is an int, you must also provide a delay, even if it is 0, as
you see in the example. This is so the run-time can distinguish between these two constructors:

public AsynchMethodInvoker (Object object, String methodName, int delay);
public AsynchMethodInvoker (Object object, String methodName, Object argument) ;

As you can see, if we were to have just written:

AsynchMethodInvoker<Integer> ami =
new AsynchMethodInvoker<Integer>(c, "get", Calendar.MONTH);

Since calendar.MONTH is an int constant, the first constructor of the two constructors listed above is
being used, meaning the AsynchMethodInvoker is looking for a get method of Calendar that takes no
parameters, and it will fail. So, in order to pass a single int parameter into a target method with
AsynchMethodInvoker, you must supply a delay value, even if zero. No other parameter type is
affected.

Dealing with Methods Receiving Variable Argument Lists

The same kind of problem can exist when invoking methods that take a variable number of parameters.
Consider an invocation of the printf method of PrintStream. The signature of PrintStream's
printf method is this:

public PrintStream printf (String format, Object ... args)

Which technically, is two parameters; a String and an array of objects. In order to properly handle this,
you'll need to bundle the list of parameters into an array for it to work properly:

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.MethodInvoker;

public class VariableArgsExample {
public static void main(String[] args) {
// Dynamic invocation of
//

// System.out.printf ("Hello %s, I have %d dollars!", "Joe", 10);
MethodInvoker mi = new MethodInvoker (System.out, "printf",
"Hello %s, I have %d dollars!\n",

new Object[] { "Joe", 10 });
mi.invoke () ;

// Asynchronous invocation of the same

new AsynchMethodInvoker (System.out, "printf",
new Object[] { "Hi %s, I have %d dollars!\n",
new Object[] { "Mary", 20 }});

It is easier and clearer what to do within MethodInvoker. The first parameter following the target
method name within the use case for MethodInvoker is the format, and the second is the array of
objects used to fill in the pattern. For AsynchMethodInvoker, though, because multiple arguments
need to be designated as an array of objects, and in this case since one of the parameters is itself an
array of objects, the special case of an array containing an array is necessary.

But don't let these complications get you down. These are some of the most extreme cases of difficulty
in using the DEF, but I did want to be assured you had clear examples and explanations on how to
handle them.

Function Pointers

MethodInvoker and AsynchMethodInvoker are essentially function pointers in Java. I didn't invent
this, the great folks at Sun did, but these classes hide some of the details of making dynamic
invocations easier. Both classes hold a reference to an object, employ an algorithm to resolve the
method to invoke, and then invoke that method based upon the contract of the class. MethodInvoker
invokes a method synchronously when its invoke method is called. AsynchMethodInvoker invokes a
method in a separate thread when the class is instantiated.

Both instances can feed parameters to the target method, and both have their own nuances for handling
cases when multiple parameters and variable argument lists need to be provided to the target method.

In the examples seen in Chapter 1, the values of the arguments provided to the target methods were
established at the time they were provided to the methods. When used this way, this makes the
parameter values somewhat constant. In many cases, this is just fine. In other scenarios, however, one
needs the values of the arguments to the target methods to represent a more real time value.

Take, for example, a bean state monitor that, from time to time displays the values of a bean every
second. This pattern has been very useful for debugging when a problem is temporal in nature, rather
than simply procedural. —However, this pattern is also necessary for Ul's requiring regular visual
updates based upon the state of one or more objects.

Here is a very simple example of the problem:

import java.util.Calendar;

import com.jmorgan.lang.MethodInvoker;

public class ConstantParmValueProblem {

public static void main(String[] args) {
Calendar c¢ = Calendar.getInstance();
c.set (2011, Calendar.JANUARY, 15);
MethodInvoker mi = new MethodInvoker (System.out, "println",
c.getTime ()) ;

mi.invoke () ;
ThreadUtility.sleep(1000) ;
c.set (1995, Calendar.AUGUST, 31);

mi.invoke () ;

Notice the date printed is January 15, 2011 in both cases, which may not be desirable or apparently
intended by the path of the code. This is because the value of the parameter passed into the invocation

of the print1n method is established when the MethodInvoker is instantiated. So println is printing
the same value both times, even though the state of the original object has changed.

What we really want is the value when the method is invoked, every time and whenever it occurs. To
solve this, we will show how MethodInvoker can be used as a surrogate for the parameter of the target
method. More accurately, MethodInvoker Will be used to dynamically invoke the getTime method of
Calendar instance, and use the return value of that method as the parameter for the print1n method
of the system output stream.

import java.util.Calendar;
import com.jmorgan.lang.MethodInvoker;

public class ConstantParmValueSolution {
public static void main(String[] args) {
Calendar ¢ = Calendar.getInstance();
c.set (2011, Calendar.JANUARY, 15);

MethodInvoker getTimePointer = new MethodInvoker (c, "getTime");

MethodInvoker mi = new MethodInvoker (System.out, "println",
getTimePointer) ;
mi.invoke () ;

ThreadUtility.sleep(1000) ;
c.set (1995, Calendar.AUGUST, 31);
mi.invoke () ;

}

As you can see, the correct date is printed. This is because the getTime method of the calendar
instance is accessed by a “pointer” to the method, rather than by capturing the return value of the
method during the instantiation of MethodInvoker, which effectively makes the value of the parameter
to the method a constant. The difference is created because when the MethodInvoker runs println, it
needs to provide the method an argument. When it looks up the argument to provide to the printin
method, it sees that it is referencing another MethodInvoker instance. This instance is targeted at the
getTime method of the calendar instance. When invoke is called for the println method, it then
runs getTime of the calendar instance, retrieves the return value and then passes that value to
println.

Finally, to bring this point together, we'll see how MethodInvoker and AsynchMethodInvoker can
work together to produce a really nice asynchronous and dynamic result:

import java.util.Calendar;

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.MethodInvoker;

public class AsynchDynamicParmValueExample {
public static void main (String[] args) {
Calendar c¢ = Calendar.getInstance();
c.set (2011, Calendar.JANUARY, 15);

MethodInvoker getTimePointer = new MethodInvoker (c, "getTime");

new AsynchMethodInvoker (System.out, "println", getTimePointer);
new AsynchMethodInvoker(c, "set",

new Object[] { 1995, Calendar.AUGUST, 31 }, 500);
new AsynchMethodInvoker (System.out, "println", getTimePointer, 1000);

}

In the above example, we initialize the date to January 15™, 2011. Then we setup a pointer to the
getTime method of the calendar instance using MethodInvoker, and then invoke println
asynchronously. In order not to create a timing issue, and since we don't know exactly when it is safe
to change the date, we invoke the set method 500 milliseconds later. Then again, to display its new
value, we print the calendar's value one second after that.

Summary

OK, maybe that wasn't a perfect example, but it proves the application of the utility of this API in the
simplest of ways. Keep in mind that MethodInvoker runs its target method synchronously. As a stand-
alone class, it proves its worth mostly as a function pointer and surrogate for an asynchronous process,
and is also very useful in environments where you know a method exists on an instance, but the
reference you have to it is too primitive to resolve at compile time.

There have also been many times | have a reference to instances of classes that do not and can not exist
within the same hierarchy or, for whatever reason, cannot implement the same interface because the
classes are third-party classes where I don't have access to the source code. In these situations, being
able to dynamically invoke one or more methods is priceless.

I'm going to run off and write Chapter 2 to tell you a bit more about the remaining features of
MethodInvoker and AsynchMethodInvoker. While you're waiting, start browsing through your code
for places where you can replace code bloat with what you've learned so far. I'll bet you can start
shaving off hundreds of lines of code, thus reducing the complexity of your apps, thereby improving
maintainability as well!

Chapter 2 — Additional Features of the DEF

No dynamic and asynchronous process would be complete without being able to cancel a scheduled
process. Once the ability to cancel a process is introduced, especially in a multi-threaded world, the
ability to know if the process has canceled is needed. You'll also really like the ability to restart an
asynchronous process. We'll also take a look at the TnvocationListener interface which gives us the
ability to not have to loop and wait for the finalization of an asynchronous invocation, but simply be
notified when it occurs. Finally, we will see it all come together with DynamicProcess.

Canceling an Asynchronous Process

So, you kicked off the process, then something happens that means it may not be such a good idea for it
to actually run. You need a way to cancel the process if it has not yet run. Canceling is only possible if
the invoking process has not actually invoked the target method, which means it only applies to the
AsynchMethodInvoker. Additionally, it is possible to know if the process is canceled. Here is an
example:

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.util.ThreadUtility;

public class CancelProcessExample {
public static void main(String[] args) {
// Setup to run println 5 seconds from now
AsynchMethodInvoker mi = new AsynchMethodInvoker (System.out, "println",
"Hey, I wasn't canceled", 5000);

System.out.println ("Other things happening here....");

// Tell it to cancel
mi.cancel () ;

// Waiting for final cancel notification may take a while
while (!mi.wasCanceled()) {
System.out.println ("Hasn't even tried yet");
ThreadUtility.sleep(1000);
}

// It will loop indefinitely above if cancel doesn't work,
// so if you see this, everything worked just fine!
System.out.println ("Cancel Successful");

Your results may vary, but generally speaking, if the program prints, “Hey I wasn't canceled”, then
it didn't work. I venture to say, though, that not only did it work, but it probably didn't get a chance to
print out that it “Hasn't even tried yet”.

Restarting an Asynchronous Process

It's finished! Done! Over! What do you mean it got canceled!? No, this isn't a rejection letter from a
dream date. We're still talking about the DEF. For some reason, the Concurrency API and the
mentality of the multi-threading universe sees this as the end of the world. Well, with the DEF, it isn't.
Of course, recreating an asynchronous process is just as easy as initially creating it. It's just one line of
code, after all.

Before you go off taking the short road and instantiating new AsynchMethodInvokers all over the
place, take a moment to understand a little more detail about what it is doing. When you write
something like:

new AsynchMethodInvoker (System.out, "println", "Hello World");

You are creating an instance of an AsynchMethodInvoker, quite obviously, but what happens inside the
guts of the thing? Well, it first determines if there is a method with the target name. Then, if
arguments are provided, it must match up the arguments to the method by type. Anyone having the
slightest bit of Reflection API experience knows how this is done. This API takes parameter to method
matching quite a bit further, and as you use the API, you will come to understand just how far it goes.

Once it finds the matching method, it then proceeds to make any data conversions it deems necessary
before invoking the method. Another nice thing the DEF does is it creates a cache of methods of
classes by parameter. This way, if you do decide to create a series of instances rather than reuse the
existing instance, future matching should occur faster. In short, it just saves you a bunch of code and
WOTTY.

Make no bones about it, though. Even though the DEF streamlines performance, any API like this will
take some toll on speed. It will speed up your programming and maintenance, but not your program.
Yet, when you need a friendly, fast, and simple approach to dynamic and asynchronous processes, this
API is sufficient for the vast majority of applications.

Returning back to the topic at hand, once an AsynchMethodInvoker finishes, the thread used to invoke
the method is, indeed dead. What do you care? If you want to invoke it again with the same settings as
before, just do it! Here's how:

import java.util.Calendar;

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.util.ThreadUtility;

public class RestartingAsynchMethodExample {
public static void main (String[] args) {
Calendar ¢ = Calendar.getInstance();
c.set (1994, Calendar.APRIL, 1);

AsynchMethodInvoker mi =
new AsynchMethodInvoker (System.out, "println", c.getTime());

while (!mi.hasCompleted()) ThreadUtility.sleep(100);

// Just for fun, Let's delay the next execution for 1/2 second
mi.setDelay (500);
mi.invokeMethod() ;

Using InvocationListener

Regardless of which flavor of invoker you are using, sometimes knowing when things are about to
happen, or when they have happened is important. You've already seen a couple of ways to poll for
information, such as the use of the hasCompleted and wasCanceled methods.

Another way to be able to react to the internals of what is going on within the DEF is to install one or
more InvocationListenerS. An InvocationListener 1s an interface whose implementations
receive notificationa of InvocationEvents. The invocation event contains all the information about
the invocation, such as the target object and method, the values of the arguments to the method, the
time of invocation, if the method returns a value, and the return value.

InvocationListeners have three events:

public boolean methodInvocationNotice (InvocationEvent invocationEvent);
public void methodInvoked (InvocationEvent invocationEvent);
public void methodInvocationCancelled(InvocationEvent incocationEvent) ;

The first event is fired just before the target method is invoked. Within the InvocationEvent, the time
of the event is still null and there is no return value. Ifthe methodInvocationNotice returns true, it
indicates it is OK to invoke the target method. If the methodInvocationNotice returns false, the
listener indicates the method should not be invoked. If multiple listeners are registered, and any one of
their methodInvocationNotice events returns false, the method will not be invoked. This, then, is
another way to cancel the method invocation.

The second event is fired after the target method on the target object is invoked and has returned. If the
target method returns a value, that value is available to the TnvocationEvent. The third event is fired
only if the method invocation is canceled. The InvocationEvent indicates the invocation is canceled
as well. Here is an example:

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.InvocationEvent;
import com.jmorgan.lang.InvocationListener;
import com.jmorgan.lang.MethodInvoker;
import com.jmorgan.util.ThreadUtility;

public class InvocationEventExample {
public static void main(String[] args) {
Listener listener = new Listener ("Normal");

MethodInvoker<vVoid> mi =

new MethodInvoker<>(System.out, "println", "Hello There");
mi.addInvocationListener (listener);
mi.invoke () ;

listener = new Listener ("Cancelled"):;
AsynchMethodInvoker<Void> ami =
new AsynchMethodInvoker<>(System.out, "println",

"I should be cancelled.", 250);
ami.addInvocationListener (listener) ;
// This to simulate some delay between the AsynchMethodInvoker
//and its cancellation, otherwise the thread may not have been
//invoked by the thread manager, and cancel would appear to fail
ThreadUtility.sleep (50);
ami.cancel () ;

listener = new Listener ("Revoked", false);
ami = new AsynchMethodInvoker<>(System.out, "println",

"I should be revoked.", 250);
ami.addInvocationListener (listener) ;

}

static class Listener implements InvocationListener {
private boolean shouldInvoke;
private String eventType;

public Listener (String type) {
this (type, true);
}

public Listener (String type, boolean shouldInvoke) {
super () ;
this.eventType = type;
this.shouldInvoke = shouldInvoke;

}

public void methodInvoked (InvocationEvent invocationEvent) {
System.out.println(this.eventType + ": " + invocationEvent);

}

public boolean methodInvocationNotice (InvocationEvent invocationEvent) {
System.out.println (this.eventType + ": " + invocationEvent);
return this.shouldInvoke;

}

public void methodInvocationCancelled (InvocationEvent invocationEvent) {
System.out.println(this.eventType + ": " + invocationEvent);

}

Note in the above example, the Listener class implements InvocationListener, and so provides the
requisite implementation. Just before the method is to be invoked, the MethodInvoker notifies all
InvocationListenerS via methodInvocationNotice. When the invoke method is called with the

MethodInvoker, it notifies all registered InvocationListeners via methodInvoked handing them an
InvocationEvent, which contains all of the information needed related to the invocation.

Important methods for the InvocationEvent class are:

public Object getInvocationTarget () ;
public Method getMethod() ;

public Object[] getMethodArguments();
public boolean hasReturnValue();
public Class<?> getReturnValueType ()
public Object getReturnValue();
public boolean isCancelled();

The first three are needed if the same InvocationListener is listening to multiple invokers. The next
three are needed if the listener is interested in doing something with the return value. If
hasReturnValue returns false, then the method is declared as a void method and getReturnvalue
returns null. Otherwise, getReturnvalue returns the value returned by the invocation of the method.

Note that if getReturnvalue returns null, and hasReturnvalue 1S true, then the method returned
null. As previously mentioned, getReturnvalue returns null if hasReturnvalue iS false, which
means that the method does not return a value. Therefore, it is necessary to use hasReturnvalue in
conjunction with getReturnvalue to distinguish the two cases.

isCancelled returns true if the method invocation was canceled either by external code, or by any
registered InvocationListener

Creating a Dynamic Process

So far, we have seen many uses of MethodInvoker and AsynchMethodInvoker. These are great when
you have a single function to call or for use as a single function pointer. Not too long ago, however, I
was working on some coding related to a wholesale business, and the application of taxes began to look
somewhat like the tax code. For some, no tax was charged. For others, tax was charged on certain
items but not others. Sometimes tax was charged before other times. It became, well, irritating.

So, I had a few choices. I could architect an interface/class hierarchy based upon dependency injection
that would work, performing maybe a “computeTotal” function, and then create some kind of factory
class to dish out the correct instance based upon the conditions of the transaction. I could have just
written about a dozen or so functions and some kind of switch statement that called the correct
function. Of course, either of those would work.

But then I thought, what if I could just dynamically build a list of pointers to the functions I needed to
call, and arrange them in the correct order based upon the logic of the rules. So, I put together this little
gem called a DynamicProcess. Here is a really simple example of how it works:

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.DynamicProcess;
import com.jmorgan.lang.MethodInvoker;

public class DynamicProcessExample {

public static void main(String[] args) {

DynamicProcess dynamicProcess = new DynamicProcess();

MethodInvoker mil = new MethodInvoker (System.out, "println",
"First Message");

MethodInvoker mi2 = new MethodInvoker (System.out, "println",

"Second Message") ;
MethodInvoker mi3 = new MethodInvoker (System.out, "println",
"Third Message");

dynamicProcess.addProcessMethod (mil) ;
dynamicProcess.addProcessMethod (mi2) ;
dynamicProcess.addProcessMethod (mi3) ;

dynamicProcess.invoke () ;

new AsynchMethodInvoker (dynamicProcess, "invoke", 1000);

Over-simplistic, I know, but shows us that we can assemble MethodInvokers together dynamically and
then invoke the bunch. In the last statement of the example, I show that we can mix-and-match to
asynchronously invoke the dynamic process as well.

This can become really complex when you begin to envision that you can use MethodInvokers as
surrogates for parameters into the methods contained by the DynamicProcess! This way, if one or
more of the methods within the DynamicProcess require parameters that need real-time values when
they are invoked, you can put together a neat little package and not lose a bit of capability.

DynamicProcess comes with two constructors, the no-argument one you see above, and this one:

public DynamicProcess (MethodInvoker...methods)

So, the above example could have been written like this as well:

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.DynamicProcess;
import com.jmorgan.lang.MethodInvoker;

public class DynamicProcessExample {
public static void main(String[] args) {

MethodInvoker mil = new MethodInvoker (System.out, "println",
"First Message");

MethodInvoker mi2 = new MethodInvoker (System.out, "println",
"Second Message") ;

MethodInvoker mi3 = new MethodInvoker (System.out, "println",
"Third Message");

DynamicProcess dynamicProcess = new DynamicProcess(mil, mi2, mi3);
dynamicProcess.invoke () ;

new AsynchMethodInvoker (dynamicProcess, "invoke", 1000);

The invoke method of DynamicProcess returns a Collection containing the return values of all of
the methods invoked. There is a placeholder within the collection for every method, even if the
method does not return a value. This makes it easier to map the return value back to the method of the
process. Here is an example:

import java.util.Calendar;
import java.util.Collection;

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.lang.DynamicProcess;
import com.jmorgan.lang.MethodInvoker;

public class DynamicProcessExample {
public static void main(String[] args) {
Calendar c¢ = Calendar.getInstance();
c.set (1999, Calendar.DECEMBER, 31);

MethodInvoker yearPointer = new MethodInvoker (c, "get", Calendar.YEAR);
MethodInvoker monthPointer = new MethodInvoker (c, "get", Calendar.MONTH) ;
MethodInvoker dayPointer = new MethodInvoker (c, "get", Calendar.DATE);

DynamicProcess dynamicProcess = new DynamicProcess (yearPointer,
monthPointer,
dayPointer) ;

Collection<?> returnValues = dynamicProcess.invoke();
for (Object returnValue : returnValues)
System.out.println (returnValue) ;

You may still be wondering what advantages this brings. Before you toss the whole idea aside,
consider the possibility that you have some kind of complex process that is unique per client. Let's also
say the process is self-provisioned, and you create a way to store the process in a database using
mnemonics mapped to the names of functions, and the client can decide the order of the methods for

their implementation. In that scenario, DynamicProcess is not only useful, it is necessary!

Using Timer, TimerListener and TimerEvent

Offered as a replacement for java.util.Timer and java.util.TimerTask are the Timer,
TimerListener, and the TimerEvent classes. I, personally, didn't like a few things about the out-of-
the-box implementation of the java.util.Timer and java.util.TimerTask and chose another route.
This, then, becomes a matter of preference, but this mechanism offers some advantages and less side-
effects of the “bunching-up” that occurs with the built-in mechanism.

The most notable difference is the use of a TimerListener, which is an interface. This enables
anything to be able to naturally participate within a timed implementation. The Timer class allows
adding one or more TimerListeners, and offers many ways to optionally delay the first execution of
the timer events and also ways to optionally invoke the events multiple times.

Each time the timer runs, it notifies all registered TimerListener's in their own thread, thus
preventing the “bunching up” and rapid-firing of timed methods. This does mean, however, that when
the Timer is set to run multiple times, the TimerListener implementation should ideally be able
complete within the timed frequency, else the implementation of the event should be made thread safe.
It takes common sense to realize that if you have a TimerListener that updates a cache of changes to a
database every two seconds, it should not take two seconds to perform the update.

TimerListeners have a single method which receives a TimerEvent object containing information about
the event:

public void timerEventTriggered (TimerEvent evt);

Here is a pretty complete example of the uses and features of this implementation within the DEF (this
page and continuing onto the next):

import com.jmorgan.util.Timer;
import com.jmorgan.util.TimerEvent;
import com.jmorgan.util.TimerListener;

public class TimerExample {
public static void main (String[] args) {
Timer t = new Timer (2000, 5, "Hello");

t.addTimerListener (new Listener ("One"));
t.addTimerListener (new Listener ("Two"));
t.addTimerListener (new Listener ("Three"));
t.addTimerListener (new Listener ("Four")):;
t.addTimerListener (new Listener ("Five"));
t

.start ();

new Timer (new Listener ("1000"), 1000, 65);
new Timer (new Listener ("30000"), 30000, 3);

class Listener implements TimerListener {
String id;

Listener (String id) { this.id = id; }

public synchronized void timerEventTriggered(TimerEvent evt) {
System.out.println (id + " Received event-> " + evt.getTime () +
": " + evt.getMessage());

Using AsynchMethodInvoker as a Timer

Another trick I frequently use when I need to ensure timed implementations can never step on top of
one another is to use AsynchMethodInvoker to schedule a method, and then reschedule the method at
the end of its invocation:

import com.jmorgan.lang.AsynchMethodInvoker;

public class AsynchMethodInvokerAsTimerExample {
private static int maxRuns = 10;
private static int currentRun = 0;

public static void main(String[] args) {
new AsynchMethodInvoker (AsynchMethodInvokerAsTimerExample.class,
"doUpdates", 1000);

}

public static void doUpdates () {
System.out.println ("Doing Updates");

if (currentRunt++ < maxRuns)
new AsynchMethodInvoker (AsynchMethodInvokerAsTimerExample.class,
"doUpdates", 1000);

Summary

Asynchronous processes can be canceled, and can also be easily restarted, which makes this framework
quite unique and very convenient and powerful. There is more than one way to obtain the return value
of an asynchronous call, by using a combination of hasCompleted and getReturnvalue, Or by using

an InvocationListener.

Additionally, we see some use of the included Threadutility class. Though the DEF internally uses
the Threadutility, if you have your own way of handling these things, please feel free to use what
you like best.

Finally, we played with DynamicProcess, showing that any set of methods can be invoked dynamically
or asynchronously. This proves to be very useful when you have the primitive methods you need for a

given process, but cannot determine at development time the order you should run the primitives. The
return values of all of the methods invoked by DynamicProcess are available from the invoke method.
Furthermore, combined with AsynchMethodInvoker, you can run the entire dynamic process in a
separate thread.

You can use a Timer to invoke or repeat timed events to TimerListeners. Or, you can use
AsynchMethodInvoker to ensure you'll never have the timed event step on itself and eliminate all
worries about thread-safe code.

Look at your code and discover if you have any need to cancel or restart asynchronous threads, or, if
you have any implementations where using an InvocationListener would be better. Maybe you can
identify opportunities to reduce code complexity with the use of bynamicProcess. While you do that,
I'm going to put together Chapter 3.

Chapter 3 — Beans Support

The DEF includes special support for standard and non-standard Java beans. As you read about the
features of this API, you may be wondering why you'd use this API rather than the popular BeanUtils
API from Apache. I have no real problems with BeanUltils, except that there are some stronger
features of this API, fewer classes to master, and a much simpler interface.

For the examples in this chapter, you will want to create a small text file named “test.txt”, and put it in
the local directory where you are writing this code, or make the appropriate changes to the programs to
ensure you are working with the file you create.

Creating Instances

The main class in this set is the Beanservice utility class, and is the basis for the beans support within
these utilities. All of the methods of this class are static, because of their general utility. To begin,
there are four methods available to obtain an instance to a bean, either by using the fully qualified class
name, or by using a reference to a class. They are:

public static Object getBean (String className) ;
public static Object getBean (Class<?> type);

These first two methods return an instance to a class. There is little surprising or special about these
methods. They are simply part of the API to make it complete.

The next two methods, though, are special. These return an instance of a class using a constructor that
takes the provided parameters. This way, you have a way of dynamically obtaining an instance even if
the bean does not contain a no-argument constructor.

public static Object getBean(String className, Object...parameters);
public static Object getBean (Class<?> type, Object...parameters);

An example of the use of these methods is shown in the following section.

Obtaining Simple Property Values

For any dynamic bean utility, a robust ability to obtain property values is essential. There are many
options available, making this next method quite capable of returning the value of just about any
property. The method is:

public static final Object getPropertyValue (Object source, String expression);

This method returns the value of the given source bean's property defined by the given expression.
To get a simple property, then, is pretty straightforward, as in this example (Note the use of the
getBean method to obtain the instance of a File object):

import java.io.File;
import java.lang.reflect.InvocationTargetException;
import java.util.Date;

import com.jmorgan.beans.util.BeanService;

public class SimpleBeanPropertyExample {
public static void main(String[] args) throws IllegalArgumentException,
InstantiationException,
IllegalAccessException,
InvocationTargetException {

File file = (File)BeanService.getBean(File.class, "test.txt");
String fileName = (String)BeanService.getPropertyValue(file, "absolutePath");
System.out.println ("The absolute name of the file is: " + fileName);

}

The first part of the example above uses the getBean method to show that a bean instance can be
created using a constructor other than a no-argument constructor. Then, we see that the
getPropertyvValue method is smart enough to understand that the expression, “absolutePath”,
resolves to a method getAbsolutePath () . It then invokes that method and returns the value.

Bean-compliant properties can be obtained in this way. That is, given the name of the property, the
getPropertyvalue method obtains the accessor method for propertyname by using either
getPropertyName Of isPropertyName, based upon the type of the property.

Obtaining Non Bean-Compliant Values

Many classes have properties or otherwise obtainable values that do not have bean compliant methods.
For the File class, the 1ength, lastModified and many other values do not have bean compliant
method names, and for collections, there is the size method. For the DEF, it is no problem, as you
can clearly see in the below example:

import java.io.File;
import java.util.Date;

import com.jmorgan.beans.util.BeanService;
public class SimpleBeanPropertyExample {

public static void main (String[] args) {
File file = new File("/");

boolean exists = (Boolean)BeanService.getPropertyValue(file, "exists");
boolean canRead = (Boolean)BeanService.getPropertyValue(file, "canRead");
boolean canWrite = (Boolean)BeanService.getPropertyValue(file, "canWrite");
boolean canExecute = (Boolean)BeanService.getPropertyValue(file,

"canExecute") ;
long lastModifedDate = (Long)BeanService.getPropertyValue(file,

"lastModified");
long length = (Long)BeanService.getPropertyValue(file, "length");
System.out.println ("The file exists: " + exists);
System.out.println ("We can read from the file: " + canRead);
System.out.println ("We can write to the file: " + canWrite);
System.out.println ("We can execute the file: " + canExecute);
System.out.println("The last modified date of the file is: " +

new Date (lastModifedDate));

System.out.println ("The length of the file is: " + length);

The Beanservice.getPropertyvalue method is smart enough to find the accessor method, if at all
possible, and return its value. If no method closely related to the property exists, a RuntimeException
wrapped around a NoSuchMethodException is thrown.

Obtaining Indexed Values — Values of Arrays or Lists

Sometimes the return value of a method is an array or a list. In this case, you can obtain the entire
array or list, or you can elect to grab one element, a slice of them, or selected elements. Note, you may
have to modify the next example a little for it to work, but I've attempted to keep things so they will
work for most:

import com.jmorgan.beans.util.BeanService;

public class BeanArrayPropertyValue {

public static void main(String[] args) {
File file = new File("/™);
File[] files = (File[]) BeanService.getPropertyValue(file, "listFiles");
for (File £ : files)
System.out.println("List: " + f.getAbsolutePath());
File fourthFile = (File)BeanService.getPropertyValue(file, "listFiles[3]");
System.out.println ("Fourth File By Index: " + fourthFile.getAbsolutePath());

Object[] slice =
(Object[])BeanService.getPropertyValue(file, "listFiles[2-5]");

for (Object f : slice)
System.out.println("Slice: " + ((File)f) .getAbsolutePath());

Object[] pickAndChoose = (
Object[])BeanService.getPropertyValue(file, "listFiles[1, 3, 4, 61");

for (Object f : pickAndChoose)
System.out.println ("Pick And Choose: " + ((File)f) .getAbsolutePath());

(Object[])BeanService.getPropertyValue(file,
"listFiles[1l, 3-5, 71");

Object[] combo

for (Object f : combo)
System.out.println ("Combo: " + ((File)f) .getAbsolutePath());

So, this is the way it works. When a single number is enclosed in brackets, such as in the above [3],
the method returns the single value at that index. If two numbers are enclosed in brackets separated by
a dash, [2-57, it returns an array of values containing the elements from the first index through to the
second index, inclusively. Two or more comma delimited numbers enclosed in brackets, such as in [1,
3, 4, 6], is interpreted as a list of individual index values, and an array of values is returned
containing the values at each of the index locations. You can also combine the syntax, with a mixture
of comma delimited numbers and/or ranges, [1, 3-5, 71, and get an array containing those
elements.

A couple of other things to note. When selecting a single index value, a single object reference is
returned. When selecting a range or more than one index value, an object array is returned. If the raw
property value resolves to a string, StringBuffer, Of StringBuilder, then you are indexing to
individual characters or character ranges within that String, StringBuffer, Or StringBuilder, and
will receive back either a single character if only a single index is used, and an array of Objects
containing the characters of the slices and/or indexes.

Ranges must be in min - max format. Individual indexes, however, do not have to be in sequential
order, and therefore can be returned in an arbitrary order, such as (8, 3-5, 9, 11-14, 0] to receive
an object array with the values from the original array from indexes, 8, 3, 4, 5, 9, 11, 12, 13,
14, and 0, in that order.

As you might can imagine, we just opened up a 55 gallon drum of things that can go wrong here.
Essentially, the rules are much like if you were not using this API and working directly against an array
of values referencing indices there. Certainly, ArrayIndexOutOfBoundsExceptions can Occur.

Accessing Nested Values

Nested properties can be obtained by separating the properties with periods as in the standard Java
beans compliant way, and, of course, not all properties need to be fully bean compliant:

import java.io.File;

import com.jmorgan.beans.util.BeanService;

public class NestedPropertyExample ({
public static void main(String[] args) {

File file = new File("test.txt");

String parentFileName = (String)BeanService.getPropertyValue(file,
"absoluteFile.parent");

System.out.println ("Parent File: " + parentFileName) ;

int parentFilelLength = (Integer)BeanService.getPropertyValue(file,
"absoluteFile.parent.length");

System.out.println("Parent File Length: " + parentFileLength);

int length = (Integer)BeanService.getPropertyValue (new File ("\\"),
"listFiles[5].toString.length");

System.out.println ("Fifth File Name Length: " + length);

The same kinds of problems you'd experience coding this normally can occur here too. The most
common exceptions you'll encounter with nesting are NullPointerException and
ClassCastException., but you may also encounter an ArrayIndexOutOfBoundsException if using
index values or ranges out of bounds.

Using Expressions

It is possible to construct simple expressions on properties as well. Simple mathematical operations
and string concatenation is possible. I decided not to try to develop a full expression parser and
essentially a full-blown sub-language, because the base Java language is better equipped for that, and
we're already taxing performance, but some basic expressions are possible:

import java.io.File;
import com.jmorgan.beans.util.BeanService;

public class SimpleExpressionsExample {
public static void main(String[] args) {
File file = new File("test.txt");

String concatenated = (String)BeanService.getPropertyValue(file,
"absoluteFile.parent + '\\' + name");

System.out.println ("Concatenated String: " + concatenated);

double length = (Double)BeanService.getPropertyValue(file,
"name.length + absoluteFile.parent.length");

System.out.println ("Combined Length: " + length);

The mathematical operators are:

+ To add two numbers or concatenate Strings

— To subtract two numbers (unless it is used as a range separator in an array slice expression)
* To multiply two numbers

/" To divide two numbers

% Modulo division

A Raise the first number to the power of the second

All mathematical operations are performed with double precision, and are returned as a Double.

Other BeanService Methods

There are some safety measures that might help you determine if something you are about to do will be
successful. For some objects, these “safety” measures can cause more damage than good. Other
methods can help with generating a hashCode for a class, or writing an object's properties to a String.
Other available features are:

public static Class<?> getPropertyType (Object source, String expression);

This method will return the type of a property or expression. Any expression accepted by
getPropertyvalue is allowed here. The only real notes of concern with this is that when using array
expressions that return more than one value, the type will always be an object array. When any
mathematical expression other than String concatenation is evaluated, it will be Double.

public static final Method[] getBeanAccessors (Object bean);

Returns a best-guess list of methods that appear to return information about a class. Basically, this
method returns all methods having no arguments and non-void return types. Be careful, though,
because not all methods of a class fitting this description are actually accessors. For example, running

this method against a File object returns the methods delete, createNewFile, mkdir, and
mkdirs. Certainly, there is no way to establish a perfect list of accessors, since folks that write Java
classes don't always adhere to JavaBean compliant practices, not even the great people of Sun.

public static final Method[] getBeanMutators (Object bean);

Returns a best-guess list of methods beginning with the “set” prefix and taking at least one argument.
This cannot guarantee that every method actually mutates the state of an object, but the general contract
of a “set” method is assumed to do so.

public static ArrayList<String> getPropertyNames (Object bean);

Returns a best-guess list of properties based upon the list of methods returned by getBeanaAccessors.
If an accessor method name begins with “get” or “is”, this is stripped from the name to assume the
name of the property. Not all properties are mutable, so the goal of this method is to return the names
of properties that provide information about the bean. The same warning applies here as the one for
getBeanAccessors. ForEile(ﬂﬁeCB,thB method returns delete, createNewFile, mkdir, and
mkdirs. The fully dynamic nature of this feature can set you up for problems if you don't know what it
1S you are running against.

public static ArrayList<String> getMutablePropertyNames (Object bean);

Returns the best-guess list of bean-compliant mutable properties of a bean. This method assumes that
methods beginning with the prefix “set” and having one or more parameters is a mutator for a
property, though there is no guarantee methods following this standard actually mutate the state of the
bean, nor will it return the names of properties that are modifiable via a method not having bean-
compliant names.

public static final String toString(Object bean, String delimiter);

This method renders the given bean into a printable String by obtaining the bean's accessors and then
concatenating their values using the given delimiter. This is by no means a replacement for a
developer to not develop a proper tostring method for their beans, but is very useful when you need
to render a bean or object into a string when that bean or object does not contain a proper method.

public static final int getHashCode (Object bean);

Creates a hash code using the current state of the bean. This is useful for classes with no or poorly
written hashCode methods, or even as a convenient replacement for you having to develop your own
hashCode method. However, there is little chance that if the class has a properly written hashCode
method, that this method will resolve to the same hash code. However, this method will return a hash
code unique to the state of the bean such that it is usable with hashing mechanisms.

Setting Property Values

Property values can be set in a very similar way as getting values. Values can be set using all
expressions supported for getting values provided the expressions actually resolve to mutable values.
Obviously, then, mathematical and concatenation expressions will not resolve to mutable properties.

Likewise, care should be taken when mutating values of array slices and multiple array values, as
unexpected results can easily occur.

Note this method is designed to receive a single value for the property to set. Therefore, for methods
requiring multiple values, defer to using MethodInvoker.

It is best to keep things simple, or by obtaining the values and mutating them individually. Here is a
simple example:

import java.util.Calendar;
import com.jmorgan.beans.util.BeanService;

public class SetBeanPropertyExample {
public static void main(String[] args) {
Calendar ¢ = Calendar.getInstance();

System.out.println ("Calendar Value: " + c.getTime());

BeanService.setPropertyValue(c, "firstDayOfWeek", 3);
BeanService.setPropertyValue(c, "lenient", false);
BeanService.setPropertyValue(c, "clear", Calendar.MONTH) ;

System.out.println ("First Day Of Week: " + c.getFirstDayOfWeek());
System.out.println("Is Lenient: " + c.isLenient());
System.out.println ("Calendar Value: " + c.getTime());

As you can see, both Java Bean compliant properties can be set, as well as non-Java Bean compliant
property names, provided the methods matching those names receive a single parameter and, of course,
actually exist.

Using BeanComparator

If you are a Commons BeanUltils user, you're really going to think I just copied what they did. I
promise, this BeanComparator is similar to the Commons BeanUtils BeanComparator class in name
only, and you'll soon see this one is much more sophisticated. Using this BeanComparator, you're
likely to never need to write another comparator, ever!

As the name of the class suggests, this class can compare any two beans based upon one or more
properties. The “properties” to compare are expressions with the same rules as that for the
BeanService.getPropertyValue method detailed earlier in this chapter. Therefore, bean compliant,
non-bean compliant, nested properties, array elements, and even results of expressions can be
compared between two beans. Descending sorts can be obtained by prefixing the property name or
expression with a minus sign, as in “-name”. Furthermore, unlike Commons BeanUtils
BeanComparator, this class supports the definition of more than one property.

Here is an example:

import java.io.File;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

import com.jmorgan.beans.util.BeanService;
import com.jmorgan.util.comparator.BeanComparator;

public class BeanComparatorExample {
public static void main(String[] args) {
File file = new File("/");
File[] files = file.listFiles();

List<File> filelist = Arrays.asList(files);

BeanComparator<File> comparator = new BeanComparator<File>();
comparator.addCompareProperty ("name") ;

sortAndShow(filelList, comparator, "**** Sorted by name ****" "name");

comparator.clearCompareProperties () ;
comparator.addCompareProperty ("length") ;

sortAndShow(filelList, comparator, "\n**** Sorted by length ****"_ "length");
comparator.addCompareProperty ("name") ;
sortAndShow(filelList, comparator, "\n**** Sorted by length then name ****", "length");

comparator.clearCompareProperties () ;
comparator.addCompareProperties ("-length", "name");

sortAndShow(filelist, comparator,
"\n**** Sorted by length descending, then by name ****", "length");
}

private static void sortAndShow (List<File> files,

BeanComparator<File> comparator,
String title, String property) {

Collections.sort(files, comparator);

System.out.println(title);

for (File file : files) {

System.out.println("\t" + file.getName() + " - " +
BeanService.getPropertyValue(file, property));

The first note about the example is that BeanComparator uses the parameterized type of the bean to be
compared. After construction, you add one or more compare properties through the
addCompareProperty and addCompareProperties methods. BeanComparator also has a couple of
convenience constructors enabling you to set compare properties during instantiation:

public BeanComparator (Collection<String> properties);
public BeanComparator (String[] properties);

The clearCompareProperties method allows you to reset an existing BeanComparator instance for
another use. Two other methods enable you to either set or reset the properties of the BeanComparator
instance:

public void setCompareProperties (Collection<String> compareProperties);
public void setCompareProperties (String[] compareProperties);

Using AnyObjectComparator

This class can be used to reasonably compare any two objects, even if they do not implement the
Comparable interface:

import com.jmorgan.util.comparator.AnyObjectComparator;

public class AnyObjectComparatorExample {
public static void main(String[] args) {
AnyObjectComparator ¢ = new AnyObjectComparator();

Boolean bl = new Boolean (true) ;
Boolean b2 = new Boolean (true) ;
System.out.println ("Boolean Compare: " +

c.compare (bl, b2));

Character cl = new Character ('A');
Character c2 = new Character ('B');
System.out.println ("Character Compare: " +

c.compare(cl, c2));

Integer integerNumber = new Integer (4);
Long longNumber = new Long(4);

System.out.println ("Different Number types Compare: " +
c.compare (longNumber, integerNumber)) ;

StringBuilder sb = new StringBuilder ("King Kong") ;
System.out.println ("String/StringBuilder types Compare: " +
c.compare (sb, "King Kong")):;

c.setNullHandling (AnyObjectComparator.NULLS ARE FIRST);
System.out.println ("String to null comparison where nulls are first: " +
c.compare ("Godzilla", null));

c.setNullHandling (AnyObjectComparator.NULLS ARE LAST);
System.out.println ("String to null comparison where nulls are last: " +
c.compare ("Godzilla", null));

c.setNullHandling (AnyObjectComparator.NULLS ARE NULL) ;
System.out.println ("String to null comparison where nulls are null: ");
System.out.println (c.compare ("Godzilla", null));

The algorithm, though relatively simple, makes every possible attempt to create a successful
comparison. First, if both objects are nul1, they are considered equal. If either object is nul1, then
the evaluation is determined by the nullHandling property of the class, where nul1l values can be
considered as first or last. The default is that nul1s are first.

If both objects implement the comparable interface, then it attempts objectl.compareTo (object2).
This could cause a classCastException, which is not fatal to the process. If both objects are some
kind of Number, it compares the doublevalue of each of the two numbers and returns the result of the
comparison. Not all Number subclasses implement Comparable, and even when they do, Long to
Integer comparisons will fail, even if they can be reasonably compared, so this is a useful feature.

It then attempts a combination of objectl.equals (object2) and object2.equals (objectl), and if
either returns true, it considers them equal. It does both because there is no way to know how a given
instance compares itself to another, and one comparison may return false, whereas another may return
true. As a last resort, it returns objectl.toString () .compareTo (object2.toString()).

There is one other constructor for AnyobjectComparator allowing you to define null handling,
though you can always set nul1 handling later with setNullHandling:

public AnyObjectComparator (int nullHandling);

Summary

In this chapter, you've seen quite a number of elements of the DEF that support standard, and even non-
standard Java Beans. We've seen that we can create instances of classes, even if they do not have a no-
argument constructor. Additionally, we learned that we can access properties, even if the bean is not
necessarily bean-compliant. Complex properties, including nested properties and properties of a bean
that are elements of an ArrayList or Array are available as well.

The DEF even allows basic expressions to be created against objects, giving elemental mathematical
expressions or String concatenation features. Using the same methods available for obtaining values
(excepting expressions, of course) you can set property values as well.

We learned there are many ways to obtain information about beans by obtaining its accessors and
mutators, and an ability to create complex Comparators and use the AnyObjectComparator to safely
compare or sort any two objects.

Chapter 4 — Collections Extensions

The DEF contains a number of extensions to the Collections API. These extensions support a number
of capabilities that can simplify selections and perform other common tasks.

As a segue from the previous chapter, we'll start with the CollectionComparator class:

Using CollectionComparator

CollectionComparator is a class providing a reusable way to compare collections:

import java.util.ArrayList;
import com.jmorgan.util.comparator.CollectionComparator;

public class CollectionComparatorExample {

public static void main (String[] args) {
ArrayList<String> collectionl = new ArrayList<String>();
ArrayList<String> collection? = new ArrayList<String>();

String[] filler = { "One", "Two", "Three", "Four" };
for (String s : filler) {

collectionl.add(s);

collection2.add (s);

}

CollectionComparator<String> c¢c = new CollectionComparator<String>();

System.out.println ("Testl: Return Value of Compare: " +
c.compare (collectionl, collection2));

collectionl.add ("Five") ;

System.out.println ("Test2: Return Value of Compare: " +
c.compare (collectionl, collection2));

collection2.add ("Five");

System.out.println ("Test3: Return Value of Compare: " +
c.compare (collectionl, collection2));

collection2.add ("Six");

System.out.println ("Test4: Return Value of Compare: " +
c.compare (collectionl, collection2));

This Comparator's compare algorithm first starts with nu11 handling. If both collections are nuil1,
they are considered equal, otherwise null is considered less than a non- null collection. If both
collections are empty, they are considered equal. If both collections have the same number of elements
and contain the same elements, they are, of course, considered equal. If one collection has fewer

elements than the other and the other contains all the elements of the one, then the one with fewer
elements is considered less than the other.

Following that, the unique elements of both collections are extracted, sorted and then compared side by
side, using the AnyObjectComparator detailed in the previous chapter. The process returns the
comparison result of the first non-equal elements.

The number of elements compared is never more than the number of elements in the smaller sized
collection. Therefore, if all of the unique elements of the smaller sized collection are equal to those on
the larger sized collection, the method returns -1 if the first collection is the smaller sized collection,
otherwise it returns 1, indicating the first collection is the larger sized of the two collections.

Using Collection Services

There are three primary collection services within the DEF:

* CollectionSelector — This service selects elements from a collection based upon a defined
algorithm. We will show examples of some of the existing implementations, and provide brief
descriptions of the remaining ones.

* CollectionExecutor — Executes methods on every element within a collection. Existing
implementations include the ThreadExecutor, and the MethodExecutor.

* CollectionAggregator — Provides a means to aggregate on elements of a collection via one or
more aggregation functions. Existing aggregation functions include NumericalAggregator
and CountAggregator.

CollectionSelector

The collectionSelector is an abstract class fundamentally designed to loop through a collection and
choose elements by implementations of the isElementSelected method. CollectionSelector is a
typed class, designating the type of elements contained by the collection. CollectionSelectors also
enable the programmer to control the maximum number of elements returned.

When using a CollectionSelector, once it is provided a reference to a collection, an invocation of
getSelectedElements returns those elements of the collection, if any, matching the semantic of the
implementation.

Creating an implementation of a CollectionSelector is very easy. Here is an implementation that
returns all non-directory files from a collection:

import java.io.File;

import java.util.Arrays;
import java.util.Collection;
import java.util.List;

import com.jmorgan.util.collection.CollectionSelector;

public class FileCollectionSelector extends CollectionSelector<File> ({
public FileCollectionSelector (Collection<? extends File> collection)
throws NullPointerException {

super (collection);

}

// The one and only method you need to implement
protected boolean isElementSelected(File element) {
return !element.isDirectory();

}

public static void main(String[] args) {
File file = new File("/™);

File[] files = file.listFiles();
List<File> filelList = Arrays.aslList(files);

FileCollectionSelector selector = new FileCollectionSelector (filelist);
// If your root directory only contains directories,
// this will return an empty collection

Collection<File> trueFiles = selector.getSelectedElements() ;

for (File trueFile : trueFiles) {
System.out.println(trueFile.getAbsolutePath());

As you can see, the only method you need to implement is isElementSelected which should return
true if the element matches the semantic of the selector, or false if not.

Using InstanceSelector

InstanceSelector 1S an existing selector implementation useful on untyped collections or typed
collections that may contain subclasses of many types. Here is an example:

import com.jmorgan.util.collection.InstanceSelector;

public class InstanceSelectorExample {
public static void main (String[] args) {
java.util.ArraylList list = new java.util.ArrayList();

list.add ("Stringl");

list.add (new Thread ("Threadl"));

list.add (new Thread ("Thread2"));

list.add ("String2") ;

list.add (new StringBuilder ("StringBuilderl"));
list.add("String3");

list.add (new StringBuilder ("StringBuilder2"));
list.add("Stringd") ;

list.add (new StringBuilder ("StringBuilder3"));
list.add (new Thread ("Thread3"));

list.add (new StringBuilder ("StringBuilder4d"));
list.add ("Stringb");

list.add (new Thread ("Thread4d")):;

list.add (new Thread ("Thread5"));

list.add ("String6") ;

list.add (new StringBuilder ("StringBuilder5"));
list.add (new StringBuilder ("StringBuilderc"));

(

list.add (new Thread ("Threado"));

InstanceSelector selector = new InstanceSelector(list, String.class);
System.out.println (selector.getSelectedElements());

selector.setInstanceType (StringBuilder.class) ;
System.out.println (selector.getSelectedElements());

selector.setInstanceType (Thread.class) ;
System.out.println (selector.getSelectedElements());

Note the ability to change the instance type and reselect.

EqualsSelector

The Equalsselector selects elements of a collection equal to a “tester” value:

import java.util.ArrayList;
import com.jmorgan.util.collection.EqualsSelector;

public class EqualsSelectorExample {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<String>();
list.add("One")'

list.add ")
list.add "Two"),
list.add ("One") ;
list.add ("Two") ;
list.add "Three")'
list.add ("One");

("

(

(

(

(

(

list.add ("Two") ;
list.add ("Three") ;
list.add("Four")'
list.add ("One");
list.add ("Two") ;
list.add(‘Three")'
list.add(
list.add(

"Four") ;
"Five") ;

EqualsSelector<String> selector = new EqualsSelector<String>(list, "One");
System.out.println (selector.getSelectedElements());

selector.setTester ("Two") ;
System.out.println(selector.getSelectedElements());

selector.setTester ("Three");
System.out.println(selector.getSelectedElements());

selector.setTester ("Four");
System.out.println (selector.getSelectedElements()) ;

selector.setTester ("Five");
System.out.println(selector.getSelectedElements());

selector.setTester ("Six") ;
System.out.println (selector.getSelectedElements()) ;

The mechanism for comparing values is via the equals method of each element against the tester. That
is, its isElementSelected method is:

protected boolean isElementSelected(E element) {
return element.equals (this.tester);

}

DifferenceSelector

b

The pifferenceselector selects elements of a collection based upon their comparison to a “tester’
element and an optionally supplied comparator. If a Comparator isn't supplied, the “tester” will be
used for comparing against the elements of the collection. There are several modes for selection,
defined by constants of the class:

import java.util.ArrayList;
import java.util.Comparator;

import com.jmorgan.util.collection.DifferenceSelector;

public class DifferenceSelectorExample {
private static class TestComparator implements Comparator {
public int compare (Object ol, Object o02) {
System.out.println ("Testing " + ol + " vs " + 02);
return (((String)ol) .compareTo ((String)o2));

}

public static void main(String[] args) {
ArrayList<String> list = new ArrayList<String>();
list.add("One")'

list.add (" ")
list.add("Two"),
list.add("One");
list.add ("Two") ;
list.add("Three")-
list.add ("One");
list.add ("Two") ;
list.add ("Three");
list.add("Four")'
list.add ("One") ;
list.add ("Two") ;
list.add("Three")'
list.add ("Four");
list.add ("Five");

System.out.println ("Comparable") ;
DifferenceSelector<String> selector =
new DifferenceSelector<String>(list, "One",
DifferenceSelector.SELECT IF LESS THAN) ;
System.out.println (selector.getSelectedElements());

selector.setCompareType (DifferenceSelector.SELECT IF GREATER THAN) ;
System.out.println (selector.getSelectedElements()) ;

selector.setCompareType (DifferenceSelector.SELECT IF EQUAL TO);
System.out.println (selector.getSelectedElements());

System.out.println ("Comparator");

TestComparator cmp = new TestComparator () ;
selector.setComparison (cmp, "One");

selector.setCompareType (DifferenceSelector.SELECT IF LESS THAN) ;
System.out.println(selector.getSelectedElements());

selector.setCompareType (DifferenceSelector.SELECT IF GREATER THAN) ;

System.out.println(selector.getSelectedElements());

selector.setCompareType (DifferenceSelector.SELECT IF EQUAL TO);
System.out.println (selector.getSelectedElements()) ;

If using the tester, then the tester must implement Comparable. The comparison is conducted with the
tester's compareTo method against each element of the collection. Therefore, if the selection mode is
set to DifferenceSelector.SELECT IF EQUAL TO, then the selector returns all elements equal to the
tester. If the mode is set to DifferenceSelector.SELECT IF LESS THAN, then the selector returns all
elements less than the tester, and if the mode is DifferenceSelector.SELECT IF GREATER THAN,
then the selector returns all elements greater than the tester.

PropertyValueSelector

By far, the most powerful and flexible of the existing implementations is the PropertyvalueSelector.
This selector digs deep into the Beanservice to compare values of properties of the elements within
the collection by operating against one or more property value maps. Each property value map can be
independently compared based upon one of many comparison modes. The comparison modes are
defined as constants in the PropertyvalueSelector class.

Property names are actually expressions that allow nesting, and, in fact, any expression allowed by the
BeanService.getPropertyValue method. Here is a simple example:

import java.io.File;
import java.util.Arrays;
import java.util.List;

import com.jmorgan.util.collection.PropertyValueSelector;

public class PropertyValueSelectorExample {
public static void main (String[] args) {
File file = new File("..");
File[] files = file.listFiles();
List<File> filelist = Arrays.asList(files);

System.out.println (filelList);

PropertyValueSelector<File> selector =
new PropertyValueSelector<File>(filelist);
selector.addPropertyValueMap ("name", "M",
PropertyValueSelector.IS GREATER THAN) ;
System.out.println (selector.getSelectedElements());

selector.addPropertyValueMap ("directory", false);
System.out.println(selector.getSelectedElements());

selector.addPropertyValueMap ("length", 1000,
PropertyValueSelector.IS LESS THAN);
System.out.println(selector.getSelectedElements());

Depending upon your file system, the above example may need some changing, but, in general, the
example demonstrates the fundamental use of the selector.

The PropertyvalueSelector supports the following comparisons:

IS EQUAL_TO

IS NOT EQUAL TO

IS GREATER THAN

IS LESS THAN

IS GREATER THAN OR_EQUAL TO
IS LESS THAN OR EQUAL TO
IS IN

IS NOT IN

MATCHES

NOT MATCHES

IS NULL

IS NOT NULL

All comparisons work somewhat intuitively. The IS IN and IS NOT _IN comparison types, however,
work against collections or arrays of values. That is to say if the value of the property or exception “is
in” or “is not in” a given collection or array.

IS NULL and IS NOT_ NULL are just concerned if the property or expression resolves to NULL.

MATCHES and NOT MATCHES compares the value of the property or exception to a provided
regular expression. In these comparison types, NULL is considered to match to NULL. Otherwise the
value of the property or exception is first converted to a String via the object's tostring method, and
then matched to the regular expression.

IndexSelector

There are times when you need to operate on subsets of a collection based upon an index range. The
IndexSelector provides the convenience of returning those elements in that range. The range can be
set during construction, or later, with setBeginIndex and setEndIndex. Here is an example:

import java.util.ArrayList;
import java.util.Collections;

import com.jmorgan.util.collection.IndexSelector;

public class IndexSelectorExample {
public static void main(String[]_args) {
ArrayList<String> collection = new ArrayList<String>(100);

for (int 1 = 0; 1 < 100; i++)
collection.add("" + 1i);

System.out.println ("Selecting elements 10 to 20");
IndexSelector<String> indexSelector = new IndexSelector<>(collection, 10, 20);
for (String s : indexSelector.getSelectedElements())

System.out.println(s);

System.out.println ("\nSelecting elements 32 to 45");

indexSelector.setBeginIndex (32) ;

indexSelector.setEndIndex (45) ;

for (String s : indexSelector.getSelectedElements())
System.out.println(s);

System.out.println ("\nSelecting elements 76 to 62");

indexSelector.setBeginIndex (76) ;

indexSelector.setEndIndex (62) ;

for (String s : indexSelector.getSelectedElements())
System.out.println(s);

RegexSelector

One more existing implementation exists, the RegexsSelector, which returns values from a collection
of strings matching a provided regular expression. It is relatively simple and straightforward:

import java.util.ArrayList;
import com.jmorgan.util.collection.RegexSelector;

public class RegexSelectorExample {

public static void main(String[]_args) {
ArrayList<String> list = new ArrayList<String>();
list.add("this is a test");
list.add ("King Kong loves Godzilla");
list.add ("Nobody saw me do it, no one can prove a thing.");
list.add ("The brown fox jumped over the moon");
list.add ("Today, December 7th, is a day that will live in infamy");
list.add ("Long ago, in a galaxy far far away");
list.add("Be quiet. Do you smell that?");
list.add ("We're going to need a bigger boat");

System.out.println ("Should be all: " +

new RegexSelector(list) .getSelectedElements());
System.out.println ("All containing the letter 'v': " +

new RegexSelector(list, "[Vv]") .getSelectedElements());
System.out.println("All containing the word 'is': " +

new RegexSelector (list, "\\bis\\b").getSelectedElements()):;
System.out.println ("All containing the word 'is' or 'it': " +

new RegexSelector (list, "\\bi[st]\\b").getSelectedElements());
System.out.println("All containing words beginning with "'f': " +

new RegexSelector (list, "\\bf\\w+").getSelectedElements());
System.out.println("All containing 'on' in a word: " +

new RegexSelector (list, "\\Bon\\B").getSelectedElements()):;
System.out.println ("No matches: " +

new RegexSelector(list, "zzzzz").getSelectedElements());

CollectionExecutor

The collectionExecutor is fundamentally coded to loop through all of the elements of a collection
and execute something, ideally a method of the element, but it could do anything.
CollectionExecutor is a typed class, designating the type of elements contained by the collection.
Like collectionSelector, this class is abstract. Also like collectionSelector, subclasses need
only implement the protected abstract void processElement (E element); method.

Once a CollectionExecutor is provided a reference to a collection, an invocation of execute, starts
the iteration process, and the processElement method performs some function related to the semantic
of the implementation.

Creating an implementation of a CollectionExecutor is very easy. Here is an implementation that
clears all the time values of a collection of calendar objects:

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;

import com.jmorgan.util.ThreadUtility;
import com.jmorgan.util.collection.CollectionExecutor;

public class ClearTimeValuesExecutor extends CollectionExecutor<Calendar> {
public ClearTimeValuesExecutor (Collection<? extends Calendar> collection)
throws NullPointerException {

super (collection);

}

protected void processElement (Calendar element) {
element.clear (Calendar .MILLISECOND) ;
element.clear (Calendar.SECOND) ;
element.clear (Calendar .MINUTE) ;

}

public static void main(String[] args) {
ArrayList<Calendar> listOfDates = new ArrayList<Calendar>();

for (int i = 0; 1 < 10; 1i++) {
Calendar ¢ = Calendar.getInstance();
System.out.println ("Created: " + c.getTime());
listOfDates.add(c) ;
ThreadUtility.sleep(1000);

}

ClearTimeValuesExecutor executor = new ClearTimeValuesExecutor (listOfDates);
executor.execute () ;

for (Calendar c : listOfDates) {
System.out.println(c.getTime()) ;

As you can see, if it wasn't for the main method created in the example to demonstrate the functionality
of the implementation, the entirety of the class is just a few lines of code. There are two pre-existing
executor implementations of the CollectionExecutor class. The first is quite obviously desired.

ThreadExecutor

The ThreadExecutor does much as it sounds, starts a thread. It actually is a little more flexible than
that. ThreadExecutor takes a collection of things that implement Runnable, and since Thread
implements Runnable, it makes things quite convenient.

The process loops through the collection. If the instance is a Thread, it starts the Thread. If the
instance is not a Thread, but only an implementation of Runnable, it creates a Thread associating it
with the Runnable instance, and starts the Thread:

import java.util.ArrayList;
import com.jmorgan.util.collection.ThreadExecutor;

public class ThreadExecutorExample implements Runnable {
private String name;

public ThreadExecutorExample (String name) {
this.name = name;

}

public void run () {
System.out.println (name) ;

}

public static void main (String[] args) {
ArrayList<Runnable> list = new ArrayList<Runnable>();

list.add (new ThreadExecutorExample ("One")) ;
list.add (new Thread (new ThreadExecutorExample ("TOne"))) ;

list.add (new Thread (new ThreadExecutorExample ("TTwo")));
list.add (new ThreadExecutorExample ("Two")) ;
list.add (new Thread (new ThreadExecutorExample ("TThree")));

list.add (new Thread(new ThreadExecutorExample ("TFour")));
list.add (new Thread (new ThreadExecutorExample ("TFive")));
list.add (new ThreadExecutorExample ("Four"));
list.add (new ThreadExecutorExample ("Five"));

(
(
(
(
(
list.add (new ThreadExecutorExample ("Three"));
(
(
(
(
list.add (new Thread (new ThreadExecutorExample ("TSix")));

ThreadExecutor threadExecutor = new ThreadExecutor (list);
threadExecutor.execute () ;

So, either a Thread or a Runnable, when the ThreadExecutor runs, each is handled as expected.

MethodExecutor

The MethodExecutor seems redundant by name, since the intent of a CollectionExecutor is to
provide a means to execute something in or with each element of the collection. This class, though,
utilizes the AsynchMethodInvoker to asynchronously run a named method with an optional list of
parameters on all elements of the collection:

import java.util.ArrayList;
import java.util.Calendar;

import com.jmorgan.util.ThreadUtility;
import com.jmorgan.util.collection.MethodExecutor;

public class MethodExecutorExample {
public static void main(String[] args) {
ArraylList<Calendar> listOfDates = new ArraylList<Calendar>();

for (int 1 = 0; 1 < 10; 1i++) {
Calendar c¢ = Calendar.getInstance();
System.out.println ("Created: " + c.getTime());
listOfDates.add (c) ;
ThreadUtility.sleep(1000);

}

MethodExecutor<Calendar> methodExecutor =
new MethodExecutor<Calendar> (listOfDates, "set",
Calendar.SECOND, O0);
methodExecutor.execute () ;

for (Calendar c : listOfDates)
System.out.println(c.getTime());

Keep in mind, too, that since the MethodExecutor uses AsynchMethodInvoker to invoke the method,
function pointers in the form of MethodInvoker can be used to establish the values of the parameters at
the time the method is actually invoked. This makes for a very powerful and flexible collection of

tools.

A Use Case for Combining Selectors and Executors

It becomes extremely convenient to utilize selectors when you need to isolate elements for an executor.
This is especially necessary to ensure your selection will be able to perform the needed function. In the
next example, a collection contains a list of Runnables. You want to start any threads in the list.

Here's how:

import java.util.ArrayList;
import java.util.Collection;

import com.jmorgan.util.collection.InstanceSelector;
import com.jmorgan.util.collection.MethodExecutor;

public class SelectorExecutorUseCaseExample {
public static void main(String[] args) {
ArrayList<Runnable> list = new ArrayList<Runnable>();

list.add
list.add
list.add
list.add

(new SomeThread ("Threadl"));
(new SomeRunnable ("Runnablel"));
(new SomeRunnable ("Runnable2"));
(new SomeThread ("Thread2"));
list.add (new SomeThread ("Thread3")):;
list.add (new SomeRunnable ("Runnable3"));
list.add (new SomeThread ("Thread4"));
list.add (new SomeThread ("Thread5"));
list.add (new SomeRunnable ("Runnabled"));
list.add (new SomeRunnable ("Runnable5"));
list.add(
list.add(

new SomeThread ("Threado")) ;
new SomeRunnable ("Runnable6")) ;

InstanceSelector selector = new InstanceSelector(list,
Collection<?> threads = selector.getSelectedElements();

MethodExecutor<Thread> executor =

Thread.class) ;

new MethodExecutor<Thread>((Collection<? extends Thread>) threads,

executor.execute () ;

}

class SomeThread extends Thread {
SomeThread (String threadName) {
super (threadName) ;

}

public void run() {
System.out.println ("I am thread " + this.getName())
}
}

class SomeRunnable implements Runnable {
private String name;

public SomeRunnable (String name) {
this.name = name;

}

public void run () {
System.out.println ("I am runnable " + this.name);

}

The collection contains a mix of classes that implement Runnable.

"start");

Since Thread implements

Runnable, these can be conveniently added to the list. However, when it comes time to massively start

all of the Threads, the elements within the list that are not subclasses of Thread may not have a “start”
method. To ensure, then, that you have only Threads, the InstanceSelector is used to isolate those
into their own collection, which is then supplied to the MethodExecutor.

Property Selectors and Iterators

It is very common to loop through a collection of beans to obtain the value of a property and then use
that value for something. Wouldn't it be convenient to automate this with the simplicity of the DEF?
Well, it is! Let's take a look at a couple of other classes that can help in a number of ways.

CollectionPropertySelector

The first class, the CollectionPropertySelector enables you to get all the values of an expression
against a collection of beans. Everything you can do with an expression as described in the
BeanService above can be used here. To use the class, simply instantiate it with a collection, and then
use the “get” method to obtain a list of a named property.

For our example, we'll keep things simple, but will also show how cool it can be:

import java.util.ArrayList;
import com.jmorgan.util.collection.CollectionPropertySelector;

public class CollectionPropertySelectorExample {
public static void main(String[] args) {
ArrayList<String> collection = new ArrayList<String>();

for (int i = 0; 1 < 25; 1i++) {
collection.add ("STRING" + 1i);
}

CollectionPropertySelector<String> ps =
new CollectionPropertySelector<String>(collection);

Arraylist<Integer> lengthList =
(ArrayList<Integer>) ps.get("length", Integer.class);

ArrayList<String> lcList =
(ArrayList<String>) ps.get ("toLowerCase", String.class);

for (int 1 = 0; 1 < 25; 1i++) {
System.out.printf ("The length of String \"%s\" is %d " +
"with lower case of \"%s\"\n",
collection.get (i), lengthList.get (i), lcList.get(i));

Propertylterator

Another class having similar use is the PropertyIterator. Instead of iterating through a collection,
this iterator processes through the properties of the elements of a collection. Again, the property is

actually an expression compatible with BeansService, so everything from simple bean-compliant
properties to mathematical operations can be achieved:

import java.util.ArrayList;
import com.jmorgan.util.collection.PropertyIterator;

public class PropertylteratorExample {
public static void main (String[] args) {
ArraylList<String> collection = new ArraylList<String>();

for (int 1 = 0; i < 25; i++) {
collection.add ("STRING" + 1i);
}

Propertylterator<String, Integer> lengthIterator =
new Propertylterator<String, Integer>(collection, "length");

while (lengthIterator.hasNext()) {
System.out.printf ("The length is %d\n", lengthlIterator.next());
}

Propertylterator<String, String> lcIterator =
new Propertylterator<String, String>(collection, "toLowerCase");

while (lcIterator.hasNext()) {
System.out.printf ("The lower case is %$s\n", lcIterator.next());

Aggregators — The CollectionAggregator

When you have a collection, it is not uncommon to compute a sum, or a need to find the minimum,
maximum or average of a value or values within the collection. This is the purpose of the
CollectionAggregator class. The CollectionAggregator is simply a class that takes a reference to
a Collection and one or more AggregatorFunctions and applies to them to the collection. An
AggregatorFunction is simply an implementation that performs some computation against each
element of the collection associated with the collectionAggregator.

The collectionAggregator is designed to apply one or more AggregatorFunctions to a collection
of Java Beans, and since this class uses the DEF in full, simple or nested property aggregations are
possible. To improve performance, another fundamental design of the CollectionAggregator is to
apply as many functions as needed to the collection at one time. This means all aggregations against a
collection can be applied on a single pass.

import
import
import
import

import
import
import
import

public

java.io.File;
java.util.ArrayList;
java.util.Arrays;
java.util.Map;

com.jmorgan.math.Fraction;
com.jmorgan.util.CountAggregator;
com.jmorgan.util.NumericalAggregator;
com.jmorgan.util.collection.CollectionAggregator;

class CollectionAggregatorExample {

public static void main(String[] args) {
File rootDir = new File("/");
File[] files = rootDir.listFiles{();
ArrayList<File> filelist = new ArrayList<File> (Arrays.asList(files));

CollectionAggregator<File> aggregator =

new CollectionAggregator<File>(filelList);

NumericalAggregator lengthAggregator = new NumericalAggregator();
aggregator.addAggregatorFunction ("length", lengthAggregator);

CountAggregator<String> countAggregator = new CountAggregator<String>();
aggregator.addAggregatorFunction ("name", countAggregator);

aggregator.aggregate () ;

System.out.println ("The maximum length of the files in the list is: " +

lengthAggregator.getMaximum()) ;

System.out.println("The minimum length of the files in the list is: " +

lengthAggregator.getMinimum()) ;

System.out.println ("The average length of the files in the list is: " +

lengthAggregator.getAverage());

System.out.println("The sum of the lengths of the files in the list is: " +

lengthAggregator.getSum()) ;

Map<String, Integer> counts = countAggregator.getCounts/();
for (String name : counts.keySet()) {

}

int count = counts.get (name);
System.out.printf ("The count of occurrences of %$s is: %s\n", name, count);

Map<String, Fraction> frequencies = countAggregator.getFrequencies();
for (String name : frequencies.keySet()) {

Fraction freq = frequencies.get (name) ;
System.out.printf ("The frequency of %$s is: %s\n", name, freq.toString());

A quick note about the included Fraction class. Though it is not a formal part of the DEF, I developed
this class to more accurately represent certain numbers, such as the frequencies you see displayed in the
above sample application. Since you have access to it, though, it is only fair to see an example.
Fractions can be converted to decimals, and can convert decimals to fractions. We can also perform
simple mathematical operations on Fractions:

import com.jmorgan.math.Fraction;
import com.jmorgan.math.FractionalMath;

public class FractionExample {
public static void main(String[] args) {
Fraction oneThird = new Fraction(l, 3);
Fraction twoSevenths = new Fraction (2, 7);

System.out.printf ("%$s + %s = %$s\n",
oneThird.toString(),
twoSevenths.toString(),
FractionalMath.add(oneThird, twoSevenths));

System.out.printf ("$s - %s = %s\n",
oneThird.toString(),
twoSevenths.toString(),
FractionalMath.subtract (oneThird, twoSevenths));

System.out.printf ("%$s * %$s = %$s\n",
oneThird.toString (),
twoSevenths.toString(),
FractionalMath.multiply(oneThird, twoSevenths));

System.out.printf ("$s / %s = %s\n",
oneThird.toString(),
twoSevenths.toString(),
FractionalMath.divide (oneThird, twoSevenths));

double value = 15.35;
Fraction fromDecimal = new Fraction (value);
System.out.printf ("$2.2f to a fraction is: %$s\n",
value,
fromDecimal.toString());

Fraction toDecimal = new Fraction (32, 3, 5);

System.out.printf ("$s to a decimal is: %2.2f\n",
toDecimal.toString(),
toDecimal.toDecimal ());

Returning to the point at hand, since AggregatorFunction is an interface, it is easy to create custom
functions to do whatever you need. =~ When creating your own AggregatorFunction, there are only
two methods of the interface you need to write.

public void start();

This method is invoked from the collectionAggregator to tell the AggregatorFunction
implementation that it is about to begin its pass over the collection. This enables the implementation to
initialize its state, thus preventing the need to have a new aggregation function instance on each pass.

That is, suppose there is a Ul displaying statistics about some data you have contained within a
collection that is being dynamically modified with a thread. In this case, you'd only want one
aggregator instance and at certain timed intervals, you'd want to display the results of the aggregation.
You certainly don't want to create new aggregators and aggregation instances on each pass.

The other method of the AggregatorFunction interface is:

public void aggregate (T value);

This is the work-horse of the AggregatorFunction. It gets a reference to each value within the
collection so it can provide the service of the implementation. For example, here are the start and
aggregate methods of the NumericalAggregator:

public void start () {
this.sum = 0D;
this.minimum = Double.MAX VALUE;
this.maximum = Double.MIN VALUE;
this.count = 0L;

}

public void aggregate (Number value) {
double number = value.doubleValue() ;

this.sum += number;

if (number < this.minimum) this.minimum = number;
if (number > this.maximum) this.maximum = number;

this.count++;

Pair
A quick explanation before the we discuss the next class, because this one is referenced and used. The

pair class is a value object of a pair of any two things. You likely have something like this in your
arsenal of convenient things, and this framework uses mine.

In this case, the pair class is also a true Java bean, with proper accessors and mutators, equals,
hashCode, compareTo and tostring. It is very complete and convenient. Though no requirement to
use this one anywhere else, when it is used within the DEF, it is the class you'll need.

CollectionUtility

It is somewhat strange that after all of this, we'd have a utility class for collections. The utility
methods within the class are quite remarkable at times.

There are many ways to obtain a differential of two collections, and in the vast majority of cases, it is
just a matter of removing all elements from one collection that are contained within another, provided
the hashCode and equals methods of the contained elements are properly coded, and all the elements
are of the same type and have similar state.

I ran into a scenario, though, where I had two collections with dissimilar state where all would have
been considered unequal and their hash codes would have been different. In this particular case, |
needed to use only a few of the properties, not all of them, to determine the difference.

So, I turned to the DEF as more of a framework to create what might be the most flexible reusable diff
tool on the planet! Here are the signatures of the getpi ff methods of the CollectionUtility:

public static <T1l, T2> Collection<Pair<T1l, T2>> getDiff (Collection<T1l> collectionl,
Collection<T2> collection2, String... compareProperties)

public static <T1l, T2> Collection<Pair<Tl, T2>> getDiff (Collection<Tl> collectionl,
Collection<T2> collection2, Collection<String> compareProperties)

OK... a lot to absorb, but, if you look closely, you'll see the methods are static. You'll also notice the
seemingly over-use of generics, but wait before you judge. The method returns a collection of pair
objects (The pair class is described above). Each pair represents a representation of the differential
between the elements within the collections.

The parameters to the methods are a collection of one kind of “thing”, a collection of another kind of
“thing”, and a set of properties within those “things” to use for defining the differential. The two
collections need not actually be collections of two different kinds of things, but the methods allow it.

Coming back to the return value of the methods, you'll notice the there are two types within the
collection of pair objects returned, those types matching, respectively, the parameterized types of the
collections provided in the parameters. Some quick notes. If either collection is null or the properties
to compare them by is null, these methods return null. If both collections are empty, an empty
collection is returned. If one collection is empty, a collection is returned containing all of the elements
of the non-empty collection paired with nu11. If it is the first collection that is empty, then all the
elements of the second collection are returned in the second value of the pair elements, with all the
first values being nu11. If it is the second collection that is empty, then all the elements of the first
collection are returned in the first value of the pair elements, with all the second values being nu11.

Now, before you run away asking, “What in the world would I need this for?”, consider you have two
collections, one of, say, a Customer, the other of Employees. You want to know which employees are
customers, or vice-versa. You want a resulting list of all of them, but to quickly know which ones
match. Furthermore, you likely cannot simply rely upon equals or hashCode to determine their
differences (or similarities). You might can, however, compare their names and addresses.

Though not so quite as sexy an example, this one makes a pretty good case:

import java.util.ArrayList;
import java.util.Collection;

import com.jmorgan.util.Pair;
import com.jmorgan.util.collection.CollectionUtility;

public class CollectionUtilityExample {
public static void main (String[] args) {
ArrayList<Person> people = new ArraylList<>();
ArrayList<Employee> employees = new ArrayList<>();

String[] firstNames = { "Ben", "Jerry", "Bob", "Mary", "Alice", "Carla" };
String[] lastNames = { "Bonn", "Jones", "Bright", "Mann", "Axel", "Cross" };

= 0; 1 < firstNames.length; i++) {
3) people.add(new Person(firstNames[i], lastNames[i]));
1) employees.add(new Employee (i, firstNames[i], lastNames[i]));

for (int i
if (1 !=
I

Collection<Pair<Person, Employee>> diff =

}

CollectionUtility.getDiff (people, employees,

for (Pair<Person, Employee> e : diff) {
System.out.println(e);

static class Person {

}

String firstName;
String lastName;

Person (String firstName, String lastName) {
super () ;
this.setFirstName (firstName) ;
this.setLastName (lastName) ;

}

public String getFirstName () {
return this.firstName;

}

public void setFirstName (String firstName) {
this.firstName = firstName;

}

public String getLastName () {
return this.lastName;

}

public void setLastName (String lastName) {
this.lastName = lastName;

}

public String toString() {
return this.firstName + " " + this.lastName;

}

static class Employee extends Person

int employeelD;

"firstName",

Employee (int employeeID, String firstName, String lastName)

super (firstName, lastName) ;
this.setEmployeelD (employeelD) ;

}

public int getEmployeeID() {
return this.employeelD;

}

public void setEmployeeID(int employeeID) {
this.employeeID = employeelD;
}

public String toString () {

return "#" + this.employeeID + " - " + super.toString();

}

"lastName") ;

{

As you can see with this example, we have two simple classes (more for brevity than anything else), a
Person and an Employee. In this case, the Employee extends person (again for brevity). I didn't go
through the process of creating a proper equals and hashCode on purpose, because I wanted to prove
this will work without them. This is not to say your classes shouldn't have proper equals and
hashCode, but you may not always have control over the content or development of a class.

The setup simply loads the two collections with a variety of the information. The cool stuff starts when
we call the collectionUtility.getDiff method. Note that what we get back is:

Alice Axel, #4 - Alice Axel)

Ben Bonn, #0 - Ben Bonn)
Bob Bright, #2 - Bob Bright)

Jerry Jones, null)

(
(
(
(Carla Cross, #5 - Carla Cross)
(
(null, #3 - Mary Mann)

Which displays a full differential of people to employees and where the two differ. As you can see,
Jerry Jones is not an employee, and Mary Mann isn't in the person collection. What's more important
is, we decided not to compare by the full-blown class' contents, but arbitrary properties within them.

Another even more powerful thing, is that the getDiff method uses the Beanservice to extract those
properties. This means any expression BeanService supports is also supported as a compare property.
So, if the Person and Employee classes above had something very complex within them such as an
Address, the compare properties could have included things like “address.city” and
“address.state.abbreviation”!

Summary

Take a deep breath. I know that was a long chapter, but, it shows you the power of the DEF, and, by
now, your creative juices should really be flowing.

Chapter 5 — Additional Beans Classes

Index

Though not a formal part of the DEF, the Index class is like a HashMap, somewhat similar to TreeMap,
allows more than one entry per key, and it is very easy and intuitive to iterate through the entries.

import com.jmorgan.util.Index;

public class IndexExample {
public static void main(String[] args) {
Index<String, String> nameIndex = new Index<String, String>();

nameIndex.put ("Smith", "Bob");
nameIndex.put ("Smith", "Mary");
nameIndex.put ("Smith", "Cindy");
nameIndex.put ("Jones", "Jane");
nameIndex.put ("Jones", "Clare");
namelIndex.put ("Jones", "Henry");

for (String lastName : nameIndex.getKeys()) {
for (String firstName : nameIndex.get (lastName)) {
System.out.printf ("$s, %s\n", lastName, firstName);

BeaniIndexer

The BeanIndexer, which is a formal part of the DEF, will help you to create an index of a collection of
beans. This is very useful when needing to repeatedly process a collection of beans related to a given
value, and is much faster than repeatedly using a PropertyvalueSelector against a given property.

Multiple indexes can be obtained on a single collection with a single instance of a BeanIndexer:

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Random;

import com.jmorgan.beans.util.BeanIndexer;
import com.jmorgan.util.Index;

public class BeanlIndexerExample {
private static Random r = new Random(System.currentTimeMillis());

public static void main(String[] args) {
ArrayList<Calendar> datelist = new ArrayList<Calendar>();

for (int i = 0; 1 < 100; i++)
datelist.add(getCalendarInstance());

BeanIndexer<Calendar> dateIndexer = new BeanlIndexer<Calendar> (datelList);
Index<Integer, Calendar> indexByYear = datelIndexer.getIndexOf ("time.year",
for (int year : indexByYear.getKeys()) {
for (Calendar c : indexByYear.get(year)) {
System.out.println(year + ": " + c.getTime());

}

private static Calendar getCalendarInstance() {
Calendar c¢ = Calendar.getInstance();

int year = 2000 + (Math.abs(r.nextInt()) % 10);
int month = Math.abs(r.nextInt()) % 13;
int date = Math.abs(r.nextInt()) % 28;

c.set (year, month, date);

return c;

0);

Beyond the constructor which accepts the collection of beans to be indexed, the primary method of
BeanIndexer 1S the getIndexOf method. This method takes any allowable expression defined for
MethodInvoker. It returns an Index based upon the value of the expression. The second parameter
into the getIndexof method defines a placeholder for a null value, and also helps to define the

parameterized type of the Index.

BeanPropertyloader

The BeanPropertyLoader class loads a bean's properties with values provided from either individual
properties or from a map of properties and their values. The use case of setting a single property value
exists for completeness, and since this class uses the Beanservice to set the value, it is really not the
purpose of this class. The signature of the single property set is:

public void setProperty (String propertyName, Object value);
This method sets the given propertyName to the given value.

BeanPropertyLoader is best designed for setting multiple properties of a bean to the values associated
within a map. The method for setting multiple properties all at once is:

public void setProperties (Map<String, Object> properties);

Where the keys of the given mapped properties are the names of the properties to set to their
associated values.

The other classes defined within this chapter are pre-defined maps for use with this class, and supplies
a set of use cases for which this class is designed.

BeanPropertyMap

BeanPropertyMap 1S an abstract class providing the basic mechanism for mapping values from a
source into a bean. The source can be just about anything, such as a properties file, and XML file,
JSON data, or whatever. Several subclasses exist to handle mapping for you, but you can also create
your own BeanPropertyMap subclass.

Essentially, BeanPropertyMap takes a bean and maps arbitrary values to the bean's properties. Several
built-in control mechanisms are available to subclasses. Implementations can control which properties
should be mapped into the bean by use of the allowMap method. Properties from the map can be
altered to conform to the actual bean property name via the getPropertyNameFor method. Finally,
values having incompatible types can be converted via getvalueFor.

The map is obtained within subclasses via the getMap method, which returns the map of the properties
and values for the given implementation. For example, a class mapping a set of values from a database
table to a bean might override this method to read the data from a row in a table defining the map from
the names of the columns and their values.

The “workhorse” method is the 10adBean method, which iterates through the keys of the map from the
getMap method. For each key, it invokes allowMap to determine if the map is allowed for the
implementation. If not allowed, the key is passed by. If allowed, it takes the value from the map
obtained from the getmMap method, and then invokes the getPropertyNameFor method to get the actual
property name in the bean relative to the key of the map. It then invokes the getvalueFor the key and
the value obtained from the getMap method to get the actual value for the bean.

The property name returned from getpPropertyNameFor and the value returned from the getvalueFor
method use used to create a new map that it then feeds into a BeanPropertyLoader instance to load
those properties into the bean.

The general design of this class and the way it functions is to simply instantiate one of its subclasses
passing it the appropriate object and the bean. Once the constructor is complete, the bean's properties,
or at least the ones allowed to be set and/or those present, will be set. Therefore, the general
development pattern for uses of these classes is:

SomeBean bean = new SomeBean();
new SomePropertyMap (ThingContainingDataToMap, bean);

// bean data 1s set

PropertiesBeanMap

This class maps the values contained within a properties file into a bean. Since all properties from a
properties file are strings, subclasses should be sure to convert property values to the proper type for
the bean. Of course, another strategy could be to overload non-string property mutators of the bean to
allow a String as a parameter and then use that method to handle the conversion. Obviously, then, if
the type of a property is a String, no special coding is required.

If the PropertiesBeanMap instance is to handle the data conversions, and unless the bean's properties
are all strings, the class should certainly override getvalueFor, and potentially a11owMap. The need to
override allowMap can be in the case where the properties within the properties file may belong to
more than one bean, in which case, either multiple instances of PropertiesBeanMap may be used, or a
single PropertiesBeanMap instance with allowMap and getvalueFor testing the bean type and
providing logic to allow or disallow, and to convert under the proper conditions.

PropertiesBeanMap is used by providing it with either a file name or a file, and a bean to which the
file's properties will be mapped. The constructors are:

public PropertiesBeanMap (String propertiesFileName, ApplicationProperties bean);
public PropertiesBeanMap (File propertiesFile, ApplicationProperties bean);

So, given the name of a properties file, the properties are mapped to a bean something like this:

SomeBean bean = new SomeBean () ;
new PropertiesBeanMap ("propertiesFileName.properties", bean);

CookieBeanMap

For server-side applications, it is not uncommon to receive cookies set by the application. It is
desirable to always work with properties of a properly developed bean rather than to work with the
cookies directly, most especially if the values within the cookies need to be passed along in a POJO
based structured application.

The CookieBeanMap, like the PropertiesBeanMap, receives its name-value pairs as Strings, and so
should be structured to handle conversions where necessary. Again, like PropertiesBeanMap, the

CookieBeanMap may need to override allowMap and getvalueFor, and again, can be structured to
map to multiple beans, or have multiple instances to map to multiple beans.

CookieBeanMap works by providing it with an array of cookies and an instance of a bean through a
constructor:

public CookieBeanMap (Cookie[] cookies, T bean);

When there is trouble, having the ability to debug what is going on is helpful. Debugging can be
turned on by use of the overloaded constructor:

public CookieBeanMap (Cookie[] cookies, T bean, boolean debug);
Use of this constructor is almost always by passing true, but it is up the style of the programmer.

InitParameterBeanMap

Within server-side applications, servlets may have initialization parameters. It is desirable to load these
parameters into a bean containing the properly typed values of the parameters for later reference within
the servlet. Like the previous two mapping classes, init parameters are strings, and must handled
accordingly.

The 1nitParameterBeanMap takes a reference to a servlet and a bean, and optionally a debug flag:

public InitParameterBeanMap (HttpServlet servlet, T bean);
public InitParameterBeanMap (HttpServlet servlet, T bean, boolean debug)

HttpRequestParameterBeanMap

Maps data from a HTTP servlet request to a bean, providing the necessary data conversions.
Subclasses will need to override the getvalueFor method to return the proper value for the serviced
bean if the intended value for a given bean is not a string. Subclasses may also need to override the
allowMap method to prevent unwanted attempts at mapping, such as when you have a confirmation
field, hidden field, or other form data not to be mapped directly to the bean.

This class needs a reference to a HttpServletRequest and a bean, and, like the other server-side bean
mapping classes, allows setting a debug flag:

public HttpRequestParameterBeanMap (HttpServletRequest request, T bean);
public HttpRequestParameterBeanMap (HttpServletRequest request, T bean, boolean
debug) ;

Summary

In this chapter, we saw how we can use the Index and BeanIndexer to index collections of beans in a
number of ways. We also took a look at a utility class, BeanPropertyLoader, which is ideally used by
subclasses of BeanPropertyMap to map some kind of input to a bean.

The subclasses of BeanPropertyMap include wuseful classes such as PropertiesBeanMap,
CookieBeanMap, InitParameterBeanMap and HttpRequestParameterBeanMap, each of which makes
taking common inputs and getting their data into beans easy, intuitive and usually just a couple of lines
of code at most.

Chapter 6 — Event Delegates

Introduction

The designers of Java knew that the best mechanism for event handling was via a delegation model.
This model serves us very well in many cases, but after years of implementing interfaces and writing
many stubs, I began wishing for a better way. This was especially true in Ul programming, because,
even with the delegation model, keeping things loosely coupled continued to be a challenge. I always
thought it strange that to keep classes A and B loosely coupled, it requires tight coupling to a class or
interface C. With the DEF, there is no coupling unless you absolutely need it, and you absolutely need
it, well, never if you don't want it.

In many cases of event handling, I found my code implementing an interface only to invoke another
method when the event occurred. The most extreme case is for ActionEventListeners, which many
times just invokes some method somewhere when a UI button, menu item or link is pressed. For
example, think of a “Save” button. Ordinarily, you would implement an interface and write an entire
method just to invoke the “saveData” method on some controller. With the DEF, you can wire the
event directly to the controller, and no interface need be implemented at all!

The design of the DEF's event handling extensions is based upon the concept of “event invokers”. That
is, they solve the problem of, “when this happens over here, do that over there”. These classes
implement the appropriate interfaces, register themselves as the event handlers for an event producer,
and target a method on an object when the event occurs. Think of them as “delegating delegates”. All
event invokers work through dependency injection, most needing just to be instantiated and they're
done.

Understand, though, that the DEF is not designed to replace the delegation event model provided in
Java. The DEF is designed to enhance it where it makes most sense to do so. The general rule of
thumb is this: If your code needs the details of the event object, implement the interface. If not, then
use the DEF. However, with that said, all event invokers contain a reference to the event object. You
will also find within these examples great cases of using the MethodInvoker as a function pointer for
dynamically obtaining values of objects and keeping things completely uncoupled.

One thing to know, and UI programmers will absolutely love this feature, is that the event delegates
described herein handle their invocations asynchronously by default, but this can be changed so the
events occur synchronously.

AbstractEventinvoker

The underlying abstract class for all of the event delegates within the DEF is the
AbstractEventInvoker. This class sets up the fundamental behavior and features shared by all of the
concrete event invokers. It also contains the key ingredients to enable you to define your own event
invocation delegates. Its two constructors set up everything for the dependency injection in a generic
and straightforward manner:

public AbstractEventInvoker (Object eventProducer, Object target,
String methodName) ;

This constructor, like all you will see within these classes, takes a reference to an event producer, a
reference to a target object, and the name of a method belonging to the target object. Semantically,
when the event occurs on the event producer, invoke the named method on the given target.

public AbstractEventInvoker (Object eventProducer, Object target,
String methodName, Object...arguments);

This constructor is a simple overload to add arguments that will be passed to the named method of the
given target. There is one very powerful feature of this you don't want to forget that is fundamental to
the DEF. Any of the provided arguments can be instances of a MethodInvoker, which effectively
creates function pointers that are invoked so their return values are provided as the arguments to the
target object's method at the time the event occurs.

For Java bean compliance, since this class maintains references to the event producer, the event, the
target object, the name of the method to invoke, and optionally the arguments to the method, you have
the appropriate accessors and mutators:

public Object getEventProducer () ;
public T getEvent();

public Object getTarget();
public String getMethodName () ;
public Object[] getArguments();

and:

public void setEventProducer (Object eventProducer);
public void setEvent (T event);

public void setTarget (Object target);

public void setMethodName (String methodName) ;
public void setArguments (Object...arguments);

As an abstract super class of all the event invokers, a key method for subclasses to use so the
dependency injection works as designed is the setListenerAddRemoveMethodNames method. Its full
signature is:

protected void setlListenerAddRemoveMethodNames (String listenerAddMethodName,
String listenerRemoveMethodName) ;

This method takes the names of the methods to use to inject the invoker instance as the event listener.
Subclasses will use this method to define these within their constructors based upon the event interface
they implement.

For example, the ActionEventInvoker class (see below) implements the ActionListener interface.
Therefore, within its constructors, it has this line of code:

this.setlListenerAddRemoveMethodNames ("addActionListener", "removeActionListener");

The other key method defined within this class is the invoke method.

protected void invoke();

This method is called by subclasses within the event handler to delegate the call to the named method
on the target. Again, extending from the example of the behavior of ActionEventInvoker, its
actionPerformed method is exactly this:

public void actionPerformed (ActionEvent e) {
this.setEvent (e);
this.invoke () ;

As mentioned before, the default behavior of the invoke method of this class is to invoke the named
method of the target object asynchronously when the event occurs. This behavior can be controlled by
setting the invokeSynchronously flag:

public void setInvokeSynchronously (boolean invokeSynchronously) ;
Where passing true means to call the named target value synchronously.
Let now take a look at the implementations that exist within the DEF.

PropertyEventinvoker

Java beans and other classes that fire PropertyChangeEvents to PropertyChangeListeners are very
common. In most cases, interested classes may implement the PropertyChangeListener interface,
register to the bean, and then handle the event when a property of interest changes. This pattern is
repeated over and over. With the PropertyChangeInvoker class, the pattern can be implemented in a
much more straightforward manner.

The two constructors are:

public PropertyChangelInvoker (Object eventProducer, Object target,
String methodName) ;

public PropertyChangelInvoker (Object eventProducer, Object target,
String methodName, Object... arguments);

Where eventProducer is an instance of a class containing the addPropertyChangeListener and
removePropertyChangeListener methods. The target is an instance of a class containing a method
defined by methodname, and if the method identified by methodName requires arguments, the 2™
constructor can receive those arguments, which can be surrogates defined by instances of
MethodInvoker.

Once constructed, every time the eventProducer fires a property change event, methodName on the
given target is invoked. This may not be ideal, since the target may not be interested in every
property change event that may be fired by the eventProducer. Therefore, PropertyChangeInvoker
allows you to define a matching pattern to limit the events sent to the target:

public void setPropertyMatchPattern (String propertyMatchPattern) ;

The property match pattern can be any legal regular expression, and the default value is “.*”.

If your target is not receiving change notifications as expected, or maybe it is receiving to many
notifications, it might be necessary to “see” the names of the properties that are changing. This can be
done by setting the showPropertyNames flag via:

public void setShowPropertyNames (boolean showPropertyNames) ;

As you might expect, passing true to this method will cause the PropertyChangeInvoker to show the
names of the properties changing on the eventProducer.

Sample usage of the class might look something like this:

import com.jmorgan.beans.util.PropertyChangeInvoker;

public class PropertyEventInvokerExample ({
private SomeBean someBean;

public PropertyEventInvokerExample () {
this.someBean = new SomeBean () ;
new PropertyChangelInvoker (someBean, this, "beanStateChanged");

}

public void beanStateChanged() {
System.out.println ("Bean State Changed");

}

// Other code that changes properties of the bean... in which case the
// beanStateChanged method will be called.

public static void main(String[] args) {
new PropertyEventInvokerExample();

}

PropertyBinder

There are times when handling property changes in one bean means changing properties in another.
Ordinarily, this might mean having one instance listen to another directly, or developing a “controller”
to handle the decoupling of the two beans. PropertyBinder is just such a controller, designed to
generically handle synchronization of bean property values while keeping those beans (or classes)
completely decoupled.

The basic implementation of the use of the class is as simple as this:

import com.jmorgan.beans.util.PropertyBinder;

public class PropertyBinderExample {
public PropertyBinderExample () {
SomeBean someBean = new SomeBean () ;
SomeOtherBean someOtherBean = new SomeOtherBean () ;

new PropertyBinder (someBean, "someProperty",
someOtherBean, "targetProperty");

// The rest of the application that may change properties
// on someBean, in which case someOtherBean's property will
// be synchronized.

The semantics of the constructor in the example is essentially when someProperty of someBean
changes, then set targetProperty of someOtherBean to that new value.

Not all properties will have the same data type, and so something must be provided to give the binder a
means to convert the data type properly. Implementations of the pDataTypeConverter interface (see
below), is used for handling the conversion. All of this can be accomplished with a constructor:

import com.jmorgan.beans.util.PropertyBinder;
import com.jmorgan.beans.util.StringToDoubleConverter;

public class PropertyBinderExample2 {
public PropertyBinderExample () {
SomeBean someBean = new SomeBean|() ;
SomeOtherBean someOtherBean = new SomeOtherBean ()

new PropertyBinder (someBean, "someProperty",
someOtherBean, "targetProperty",
new StringToDoubleConverter());

In the above exanqﬂe, someProperty of someBean is a Sndng, while targetProperty of
someOtherBean is a double. Therefore, when the PropertyBinder notices the property change on the
source bean, it hands off the value to the data converter, which converts the String to a double. The
PropertyBinder then sets the target property to the converted value.

A single instance of the PropertyBinder can be used for many bindings:

import com.jmorgan.beans.util.PropertyBinder;
import com.jmorgan.beans.util.StringToDateConverter;

public class PropertyBinderExample3 {
public PropertyBinderExample () {
SomePOJOBean bean = new SomePOJOBean () ;
SomeVisualComponent componentl = new SomeVisualComponent () ;
SomeVisualComponent component? = new SomeVisualComponent () ;
SomeVisualComponent component3 = new SomeVisualComponent () ;
StringToDateConverter stdc = new StringToDateConverter();

PropertyBinder binder = new PropertyBinder () ;

binder.addBindingMap (componentl, "valuel", bean, "propertyl");
binder.addBindingMap (component2, "value2", bean, "property2");
binder.addBindingMap (component3, "value3", bean, "property3", stdc);

As you can see, a single PropertyBinder instance works via a collection of property binding maps
containing the instructions for what property changes to look for from the source beans, and what
properties to set on the target beans, and any data type conversions needing to be made.

DataTypeConverter

The data type converter interface and its implementations can be used for any data type conversion.
The PropertyBinder has been designed to use the DataTypeConverter for handling conversions for
data types while binding one bean's property to another. Though this document does not detail
examples of all of the DataTypeConverter implementations, know what implementations exist and
that you can create any number of them you need.

Implementations within the DEF include a series of classes named with the pattern:
NumberTo {AnyOtherNumberjConverter. Another set of implementations have the pattern:
StringTo{Integer|Long| Float|Double}Converter. These implementations do as they are named.
Other String based converters are: StringTo{Character|Date|StringArrayList}Converter

Using a DataTypeConverter 1s as simple as knowing the conversion needing to be completed, and, in
the best practices of general object orientation, are simple, do-one-thing-and-one-thing-well
implementations:

import com.jmorgan.beans.util.StringToDoubleConverter;

public class DataTypeConverterExample {
public static void main(String[] args) {
String someStringNumber = "123.45";

StringToDoubleConverter s2d = new StringToDoubleConverter () ;
double number = s2d.convert (someStringNumber) ;

System.out.println (someStringNumber + " converts to " + number);

s2d = new StringToDoubleConverter (-1D) ;
number = s2d.convert (null);

System.out.println("null converts to " + number);

As you can see from the above example, the concrete StringToDoubleConverter implementation
converts strings to double values, which makes it a great service to PropertyBinder in UI
applications. All implementations of pataTypeConverter within the DEF allow you to provide a
placeholder for null values.

NamedPropertyBinder

Very, very similar to PropertyBinder is the NamedPropertyBinder. The difference is that the target
method of the NamedPropertyBinder receives a name with the property value:

import com.jmorgan.beans.util.NamedPropertyBinder;
import com.jmorgan.beans.util.StringToDateConverter;

public class NamedPropertyValueExample ({
public static void main(String[] args) {
SomePOJOBean bean = new SomePOJOBean () ;
SomeVisualComponent componentl = new SomeVisualComponent () ;
SomeVisualComponent component?2 new SomeVisualComponent () ;
SomeVisualComponent component3 = new SomeVisualComponent () ;
StringToDateConverter stdc = new StringToDateConverter();

NamedPropertyBinder binder = new NamedPropertyBinder () ;

binder.addBindingMap (componentl, "valuel", bean, "propertyl", "setProperty");

binder.addBindingMap (component?2, "value2", bean, "property2", "setProperty");

binder.addBindingMap (component3, "value3", bean, "property3", "setProperty",
stdc) ;

In the above example, the somePoJOBean class contains a method, setProperty, that is invoked
something like this when using the method directly:

bean.setProperty (“propertyl”, value);

Like propertyBinder, many bindings can be created between any set of sources to any set of targets

with a single instance. Also like PropertyBinder, when assistance is needed to make data type

conversions during property binding, the pataTypeConverter of the appropriate implementation can
be used.

Summary

Chapter 7 — Ul Event Delegates
Introduction

All of the event delegates within this chapter are designed for Ul applications. Many of the delegates
will work in any UI application, applets and stand-alone applications alike. All of the Ul delegates
extend from AbstractEventInvoker, but are purpose built delegates for a particular event producer.

Another feature of all of the UI delegates is they register themselves to the event producer as the
listener for the particular event. When the producer fires the event, these delegates are notified and, in
turn, invoke a target method. Like the rest of the DEF and like the event delegates mentioned above,
the event invoker can send parameters to the target method, and, if a MethodInvoker is registered as a
parameter, it acts as a function pointer that is invoked at the time the event is consumed, passing the
return value as the parameter for the target method.

Please note that these delegates consume and maintain a reference to the event. Though these classes
are not designed to completely replace the standard Java Ul event handling design patterns, when you
don't necessarily need the event, as is the case in many situations, these classes become very handy, as
they generally require a single line of code, no interface implementations, and no empty stubs because
the app only needs to react.

Another similarity with the above event invokers is that when the event occurs, the target method is
invoked asynchronously. Sometimes this is not ideal, and so all of these classes support the basic
feature within the AbstractEventInvoker to indicate that the event and its target method should be
handled synchronously.

The example code herein utilize a number of Swing extensions I have developed over the years. It is
not the goal of this manual or the DEF to support these extensions or detail how they work, but they
enable me to present these examples in a very flexible and quick way without all the fluff that will
distract from the intent of the examples. These classes are also included in the jmorgan.jar file, so
these should work just fine.

ActionEventinvoker

One of the most handled events in Ul programming, and in other Java programming, is the
ActionEvent. One of the very early developments of the DEF resulted from my observation that
virtually every time I implemented ActionListener, I found that the actionPerformed method
almost never needed the incoming ActionEvent, and all the method did was to invoke some other
method on some other class. This almost always required some degree of coupling between two
classes, generally breaking the MVC pattern.

The ActionEventInvoker registers as an action listener to an action event producer and takes a
reference to an object and a method name or reference, and an optional set of arguments. Here's the
typical setup:

import java.awt.Container;

import javax.swing.JButton;
import javax.swing.JPanel;

import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.ActionEventInvoker;

public class ActionEventInvokerExample extends JMFrame {
public ActionEventInvokerExample () {
super ("ActionEventInvokerExample") ;

}

public Container buildGUI() {
JPanel ui = new JPanel ();

JButton button = new JButton ("Click Me");
new ActionEventInvoker (button, button, "setText", "I've been clicked!");
ui.add (button);

return ui;

}

public static void main (String[] args) {
new ActionEventInvokerExample () ;

}

In the example, a JButton is created and added to a simple Jpanel. The key things to notice are how
nothing explicitly implements ActionListener, there is no call to addActionListener, and there is
no actionPerformed. The ActionEventInvoker's constructor is taking, in left to right order, the
ActionEvent producer, the target object, the target object's method name, and an argument to pass to
that method. Since JButton instances have a setText method that takes a String parameter, we
provide a String to pass to that method when the button is clicked.

So the sequence of events is this:

1. The button is clicked and it fires an ActionEvent to all registered listeners
The ActionEventInvoker, which registered as an ActionListener to the button when it was
constructed, receives notification of the event.

3. The ActionEventInvoker then invokes the setText method of the JButton passing the String

“I've been clicked!”

Before moving along to the other delegates, let's examine another more exotic example, where the
string passed as the parameter to the method is dynamically obtained at the time the event occurs:

import java.awt.Container;

import javax.swing.JButton;
import javax.swing.JPanel;

import com.jmorgan.lang.MethodInvoker;
import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.ActionEventInvoker;

public class ActionEventInvokerExample? extends JMFrame {
private int counter = 0;

public ActionEventInvokerExample2 () {
super ("ActionEventInvokerExample2") ;

}

public Container buildGUI () {
JPanel ul = new JPanel () ;

JButton button = new JButton("Click Me");

MethodInvoker<String> getButtonTextInvoker =
new MethodInvoker<String>(this, "getButtonText");

new ActionEventInvoker (button, button, "setText", getButtonTextInvoker);
ui.add (button) ;
return ui;

private String getButtonText ()
return "I've been clicked " + ++4+counter + " times!";

}

public static void main(Stringl[] args) {
new ActionEventInvokerExample?2 () ;

}

When you run the above example, click the button several times.

There is a new method, getButtonText, that computes and returns a String when invoked. Notice,
too, the use of MethodInvoker as a function pointer to this new getButtonText method. When the
ActionEventInvoker is created, it set itself up to listen to the button's action events, and to target the
button's setText method.

This is where it gets interesting. When we create the ActionEventInvoker, instead of passing in a
String as a parameter for the setText method, we pass in the MethodInvoker as a delegate for
obtaining the value of the String at the time the button is clicked. In order for this to work, though, the
return value of the method associated with the MethodInvoker must be a String.

So the new sequence of events is this:

1. The button is clicked and it fires an ActionEvent to all registered listeners

2. The ActionEventInvoker, wWhich registered as an ActionListener to the button when it was
constructed, receives notification of the event.

3. The ActionEventInvoker then notices that the parameter to the setText method of the
JButton is not a String, but an instance of MethodInvoker.

4. The ActionEventInvoker then invokes the MethodInvoker, which calls getButtonText,
obtaining it's return value, which is a String.

5. The return value from the MethodInvoker is then passed as the parameter into the setText
method of the JButton instance.

Really cool! Extremely powerful! And it only took a tiny bit more code!

We won't always get so exotic with the remaining delegates, but understand that whenever you are
dynamically invoking a method with the DEF, if that method takes parameters, those can be obtained
by use of the MethodInvoker. And, whenever setting up a MethodInvoker, any parameters needing to
be passed to its associated method can also be delegated to a MethodInvoker, and so on!

As you can see, the DEF can be quite powerful especially when you consider that you can stack
invoker delegates together in whatever way is necessary to assist with the processing, all with very
little actual code!

ChangeEventinvoker

Change events come from a couple of Ul elements; sliders and spinners most notably. Unfortunately,
the changeEvent doesn't come with much information, so completely decoupling the event producer
from the event handling is desired. In this situation, then, we can again turn to the DEF to help direct
the result of a change event in a more useful way:

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Dimension;

import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;

import javax.swing.JTextField;

import com.jmorgan.lang.MethodInvoker;
import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.ChangeEventInvoker;

public class ChangeEventInvokerExample extends JMFrame {
public ChangeEventInvokerExample () {
super ("ChangeEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new BorderLayout());

JSlider slider = new JSlider (0, 400, O0);

JLabel label = new JLabel ("Slide the Slider");
JPanel labelPanel = new JPanel (null, true);
labelPanel.setPreferredSize (new Dimension (500, 50));
label.setBounds (0, 10, 100, 20);

labelPanel.add (label) ;

MethodInvoker<Integer> getValueMethodInvoker =
new MethodInvoker<Integer>(slider, "getValue");

new ChangeEventInvoker (slider, label, "setLocation",
getValueMethodInvoker, 10);

ui.add(labelPanel, BorderLayout.NORTH) ;
ui.add(slider, BorderLayout.CENTER) ;

return ui;

}

public static void main(String[] args) {
new ChangeEventInvokerExample () ;

}

The above example creates a Ul with a slider and a label. The label is sitting in a panel using a null
layout so it can be freely positioned. When the UI runs and the user slides the slider, the label moves

horizontally. In order to move the label, we use the setLocation method. In this case, it is important
that we use the setLocation method that takes the x and y individually, rather than the one that takes a
Point instance.

In setting up the event handling, we first setup a MethodInvoker that will obtain the value of the slider
when invoked. Then we define the event handler to use the changeEventInvoker, which registers
itself as a ChangeListener to the slider. When the changeEventInvoker receives a change event, it
invokes the setLocation method of the label, passing the getvalueMethodInvoker as the parameter
for x, and a constant 10 as the parameter for y.

When the DEF sees that the argument for the x parameter is a MethodInvoker, it invokes it, thus
calling the getvalue method of the slider capturing the return value, which it then passed in as the x
value for the setLocation method.

ItemEventinvoker

Checkboxes and radio buttons, among other things, fire TtemEvents. The TtemEvent does contain
useful information, but there are cases where we may not care so much about the contents of the event
as much as we care that the event occurred. This is where the DEF comes in:

import java.awt.Container;
import java.awt.Font;

import javax.swing.ButtonGroup;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JRadioButton;
import javax.swing.JSeparator;

import com.jmorgan.lang.MethodInvoker;
import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.ItemEventInvoker;

public class ItemEventInvokerExample extends JMFrame {
public ItemEventInvokerExample () {

}

super ("ItemEventInvokerExample") ;

public Container buildGUI () {

}

JPanel ui = new JPanel();

JRadioButton rbBold = new JRadioButton ("Bold");
JRadioButton rbItalic = new JRadioButton ("Italic");
ButtonGroup bg = new ButtonGroup();

bg.add (rbBold) ;

bg.add (rbItalic);

JLabel label = new JLabel ("Some Label");

Font labelFont = label.getFont();
label.setFont (labelFont.deriveFont (Font.PLAIN)) ;

Font boldFont = labelFont.deriveFont (Font.BOLD) ;
Font italicFont = labelFont.deriveFont (Font.ITALIC) ;

new ItemEventInvoker (rbBold, label, "setFont", boldFont);
new ItemEventInvoker (rbItalic, label, "setFont", italicFont);

ui.add (label) ;
ui.add (rbBold) ;
ui.add(rbItalic);

return ui;

public static void main(String[] args) {

}

new ItemEventInvokerExample ()

Though not the greatest example, we can see how when item events are triggered, we can steer the
result directly to a desired action using the TtemEventInvoker, rather than adding a lot more code in
the form of interface implementations.

ListSelectionEventinvoker

The ListSelectionEventInvoker routes a notification of a ListSelectionEvent to any method in
much the same way as do the previously detailed event invokers. This class is here as a matter of
completeness in the DEF, but the ListSelectionEvent is useful more often than not. However,
because we can utilize the mechanisms within the DEF robustly in our code, it still has quite a bit of
merit.

import java.awt.Container;

import javax.swing.JList;
import javax.swing.JPanel;

import com.jmorgan.lang.MethodInvoker;
import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.ListSelectionEventInvoker;

public class ListSelectionEventInvokerExample extends JMFrame {
public ListSelectionEventInvokerExample () {
super ("ListSelectionEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel () ;

JList list = new JList (new String[] { "One", "Two", "Three", "Four" });

MethodInvoker<Object> getValuelnvoker =
new MethodInvoker<Object>(list, "getSelectedvValue");

new ListSelectionEventInvoker (list, this, "setTitle", getValuelnvoker);
ui.add(list);

return ui;

}

public static void main(String[] args) {
new ListSelectionEventInvokerExample () ;

}

An important thing to know about the ListSelectionEventInvoker is that it only routes to the target
method when the value is not adjusting. That is, the target method is only invoked after the list
selection change completes. This prevents multiple calls to the target method. This is an
implementation decision being that the target method generally does not have access to the
ListSelectionEvent object to be able to know anything about the event. Again, I note, that if your
program needs to know details of the event that cannot be derived by some means, you can either hold
a reference to the ListSelectionEventInvoker and then use getEvent (), or use the standard event
listening development pattern.

AbstractMaskedEventinvoker

The last four event invokers handle event objects that are fired based upon a single method event. That
is, an ActionEvent 1S an ActionEvent, it doesn't matter if the CTRL key is pressed or if the mouse
pointer is on the left side of a button or menu item. The same is true of the ChangeEvent, the
ItemEvent, and the ListSelectionEvent.

Though a pretty good argument could be made that ListSelectionEvent is a multi-state event, being
that it is fired before, during and after a list selection change, it is included here because the event
handlers for these events have a single method defined within their related interfaces.

The following event invokers truly have different conditions under which they are fired, and many,
many empty stubs have been written to “handle” conditions in which the program isn't the least bit
interested. Measures have been taken with the out-of-the-box Java to provide “adapter” classes for
these handlers, but I have found far more often than not that programs cannot effectively utilize these
adapters without writing complex facade wrappers around them. This is especially true when a
controller needs to handle more than one of these types of events, such as handling both MouseEvents
and FocusEvents.

The event invokers for the related events that follow contain more than one method to “handle” the
many kinds of events that can actually occur. This is addressed within the DEF by subclasses of the
AbstractMaskedEventInvoker. The idea of the “mask” is to be able to clearly identify under what
conditions the target method is to be invoked. The setup of these invokers is very much the same as it
is for the single method event handlers, except we add the ability to build a mask that sets the rules for
when the target method is called. Different invokers have different, but quite intuitive, masking
values, and they can be combined to instruct the invoker to call the target method when more than one
kind of event occurs.

What this means to you as a programmer is you still have no interface to implement, no more empty
stubs to write, and no more convoluted anonymous or adapter code to invent to try and handle multiple
cases. With all that said, however, it is not uncommon to need the event object produced from these
events, such as when you need the actual location of the mouse, or the actual keys being pressed. In
these cases, it is not recommended to try and use the DEF or these event invokers, but to code the event
handler the standard way. However, when you do not need the actual event object, and you just want to
react to the fact that the mouse was clicked, or a key was pressed, these invokers work wonders.

ComponentEventinvoker

Component event producers send events under four different conditions: when the component is
shown, moved, hidden, or resized. ComponentListener, therefore, has four methods. @ What if,
though, there is a part of your program that only needs to know if the component has moved, or needs
to do the same thing regardless if the component is hidden or shown?

Providing a solution to that question is the goal of the componentEventInvoker. As a masked event
invoker, when you construct the ComponentEventInvoker, you provide it a triggering mask to tell it
under what conditions to actually invoke its target. The masks are:

COMPONENT HIDDEN
COMPONENT SHOWN
COMPONENT MOVED
COMPONENT RESIZED

Like all event invokers, the ComponentEventInvoker registers itself to its designated component and
is provided a target method and an object or class reference that will be invoked when an event occurs,
and allows parameters to be provided for the target method. There are no mysteries here,
MethodInvokers are allowed as parameter delegates, just like all previous cases.

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Dimension;

import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JPanel;

import com.jmorgan.lang.MethodInvoker;

import com.jmorgan.swing.JMFrame;

import com.jmorgan.swing.event.ComponentEventInvoker;
import com.jmorgan.swing.util.VisualComponentEditor;

public class ComponentEventInvokerExample extends JMFrame {
public ComponentEventInvokerExample () {
super ("ComponentEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new BorderLayout());

JLabel label = new JLabel ("Move Me with the mouse");
label.setBounds (10, 10, 150, 20);

JButton button = new JButton ("Watch me move with the label");
button.setBounds (10, 10, 250, 25);

new VisualComponentEditor (label);

MethodInvoker<Point> getLocationInvoker =
new MethodInvoker<Point>(label, "getLocation");

new ComponentEventInvoker (label, ComponentEventInvoker.COMPONENT MOVED,
button, "setLocation", getLocationInvoker);

JPanel labelPanel = new JPanel (null);
labelPanel.add (label);
labelPanel.setPreferredSize (new Dimension (10, 200));

JPanel buttonPanel = new JPanel (null);
buttonPanel.add (button) ;

ui.add(labelPanel, BorderLayout.NORTH) ;
ui.add (buttonPanel, BorderLayout.CENTER) ;

ul.setPreferredSize (new Dimension (600, 400));

return ui;

}

public static void main(String[] args) {
new ComponentEventInvokerExample ()

}

The above example demonstrates how simple the ComponentEventInvoker makes the visual effect
possible. Essentially, when the user moves the label, the button moves with it. Several elements of the
DEF are employed, here, including the now famous MethodInvoker. Another class, the
VisualComponentEditor, handles the visual and functional trickery to enable the user to move the
label, but it is not part of the DEF, yet it is included with jmorgan.jar, so I'll utilize it to keep the
example on topic.

We first set up a label and a button, and the bounds they will occupy within their containers. Then we
setup a visualComponentEditor and associate it with the label. The MethodInvoker references the
getLocation method of the label, which will provide the value needed for the setLocation method of
the button when the label is moved.

When we create the ComponentEventInvoker, note the mask parameter,
ComponentEventInvoker.COMPONENT MOVED. This tells the event invoker to only call setLocation
on the button when the label is moved, but not when the label is hidden, shown, or resized. In this
example, the label can be resized, and if you resize it to the left or upwards, it appears the resizing
causes the button to move. The truth is, though, that when you resize the button to the left or upwards,
the location of the label is affected, thus causing the componentMoved event to occur.

To demonstrate an example of combing masks, lets make it so the button remains the same bounds as
the label all the time:

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Dimension;

import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JPanel;

import com.jmorgan.lang.MethodInvoker;

import com.jmorgan.swing.JMFrame;

import com.jmorgan.swing.event.ComponentEventInvoker;
import com.jmorgan.swing.util.VisualComponentEditor;

public class ComponentEventInvokerExample? extends JMFrame {
public ComponentEventInvokerExample2 () {
super ("ComponentEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new BorderLayout());

JLabel label = new JLabel ("Move and Resize Me with the mouse");
label.setBounds (10, 10, 250, 20);
JButton button = new JButton ("Watch me change with the label");
button.setBounds (10, 10, 250, 25);

new VisualComponentEditor (label) ;

MethodInvoker<Rectangle> getBoundsInvoker =
new MethodInvoker<Rectangle>(label, "getBounds");

new ComponentEventInvoker (label,
ComponentEventInvoker.COMPONENT_MOVED |
ComponentEventInvoker.COMPONENT RESIZED,
button, "setBounds", getBoundsInvoker);

JPanel labelPanel = new JPanel (null);
labelPanel.add (label) ;

labelPanel.setPreferredSize (new Dimension (10, 200));

JPanel buttonPanel = new JPanel (null);
buttonPanel.add (button) ;

ui.add(labelPanel, BorderLayout.NORTH) ;
ui.add (buttonPanel, BorderLayout.CENTER) ;

uil.setPreferredSize (new Dimension (400, 400));

return ui;

}

public static void main(String[] args) {
new ComponentEventInvokerExample?2 () ;

}

The main differences in the above example is the method pointed to by the MethodInvoker, the target

method of the ComponentEventInvoker, and the combined mask that invokes the target method if the
label is resized or moved. Note the mask is built of multiple event types by using the “|” character.

ContainerEventinvoker

The ContainerEventInvoker responds to components being added or removed from a container. On
construction, it registers itself as a ContainerListener to any valid container. You may need this in a
dynamic environment where such a thing may occur, which is the reason for its existence. The masks
for this class are:

COMPONENT ADDED
COMPONENT REMOVED

Here is an example that when a button is dynamically added to and removed from a container, a
message is shown:

import java.awt.Container;
import java.awt.Dimension;

import javax.swing.JButton;
import javax.swing.JOptionPane;
import javax.swing.JPanel;

import com.jmorgan.lang.AsynchMethodInvoker;
import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.ContainerEventInvoker;

public class ContainerEventInvokerExample extends JMFrame {
public ContainerEventInvokerExample () {
super ("ContainerEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel () ;

new ContainerEventInvoker (ui, ContainerEventInvoker.COMPONENT ADDED,
this, "showEventMessage",
"Hey, something was added! Click me quick!");
new ContainerEventInvoker (ui, ContainerEventInvoker.COMPONENT REMOVED,
this, "showEventMessage",
"Hey, something was removed!");

JButton button = new JButton("Hello, I'm a button");

new AsynchMethodInvoker<Void> (this, "addButton", button, 3000);
new AsynchMethodInvoker<Void> (this, "removeButton", button, 8000);

ul.setPreferredSize (new Dimension (200, 100));
return ui;
private void addButton (JButton button) {

this.getGUIPane () .add (button);
this.getGUIPane () .validate();

}

private void removeButton (JButton button) {
this.getGUIPane () .remove (button);
}

private void showEventMessage (String message) {
JOptionPane.showMessageDialog(this, message,
"ContainerEventInvoker",
JOptionPane. INFORMATION MESSAGE) ;

}

public static void main(String[] args) {
new ContainerEventInvokerExample () ;

}

The code is pretty intuitive. A blank panel is initially created. Two ContainerEventInvokers are
created listening for cContainerEvents on the panel, one for each event, an target the
showEventMessage method of the frame. A button is created which is not immediately added to the
screen, but added 3 seconds later via an AsynchMethodInvoker call to addButton. When addButton
is eventually called, the container event fires routing through both of the containerEventInvoker
instances. However, since only one of them is listening for components to be added, only one of them
invokes showEventMessage.

A similar thing happens when 5 seconds after the button is added, it is removed. Again, both
ContainerEventInvokers are notified, but since only one of them will invoke its target method when
a component is removed, we see the correct message.

One other thing the example emphasizes. Notice the addButton, removeButton, and
showEventMessage methods are private. This is allowed in run-time environments where the
SecurityManager permits it. This would not work as an applet, because the securityManager doesn't
allow it when running within a browser. Just a note that private, protected and package Vvisible
methods can be targets under the right circumstances.

FocusEventinvoker

FocusEventInvoker 1S as it sounds, firing target methods based upon components gaining and/or
losing focus. FocusEventInvoker has two masks:

FOCUS_GAINED
FOCUS_LOST

By now, you're getting a clear idea, so here's a fun example:

import java.awt.Color;
import java.awt.Container;
import java.awt.Dimension;

import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

import com.jmorgan.lang.DynamicProcess;

import com.jmorgan.lang.MethodInvoker;

import com.jmorgan.swing.JMFrame;

import com.jmorgan.swing.event.FocusEventInvoker;

public class FocusEventInvokerExample extends JMFrame ({
public FocusEventInvokerExample () {
super ("FocusEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel () ;

JTextField firstFocus = new JTextField("First Focus");
JTextField secondFocus = new JTextField("Second Focus");
JLabel status = new JLabel ("");

status.setOpaque (true) ;

new FocusEventInvoker (firstFocus, FocusEventInvoker.FOCUS LOST,
status, "setBackground", Color.YELLOW) ;

new FocusEventInvoker (secondFocus, FocusEventInvoker.FOCUS GAINED,
status, "setText", "Second Field Gained Focus");

DynamicProcess dynProcess =
new DynamicProcess (new MethodInvoker (status, "setText",
"First Field Gained Focus"),
new MethodInvoker (status, "setBackground", Color.WHITE)) ;
new FocusEventInvoker (firstFocus, FocusEventInvoker.FOCUS GAINED,
dynProcess, "invoke");

ui.add (firstFocus) ;
ui.add (secondFocus) ;
ui.add (status);

ul.setPreferredSize (new Dimension (400, 200));

return ui;

}

public static void main(String[] args) {
new FocusEventInvokerExample () ;

}

So, two text fields and a label to display information. The first tWo FocusEventInvokers are single
mask event delegates making changes to properties of the label based upon the first text field losing
focus, and the second field gaining focus. The third FocusEventInvoker invokes a DynamicProcess
that changes both the text and background of the label when the first text field gains focus. You're
beginning to see just how flexible and powerful the DEF can become.

HyperlinkEventinvoker

In a world of richer displays of information, it is not uncommon to display HTML even within stand-
alone applications and applets. It is also nice to be able to embed links that can be used to trigger
behavior within the application. There are three types of HyperLinkEvents, and they are masked for
HyperlinkEventInvoker as:

HYPERLINK ACTIVATED
HYPERLINK ENTERED
HYPERLINK EXITED

Like the other masked event invokers, it is normally as simple as constructing them with the
appropriate mask:

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Container;

import javax.swing.BorderFactory;
import javax.swing.JEditorPane;
import javax.swing.JPanel;

import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.HyperlinkEventInvoker;

public class HyperlinkEventInvokerExample extends JMFrame {
public HyperlinkEventInvokerExample () {
super ("HyperlinkEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new BorderLayout());

JEditorPane editorPane = new JEditorPane ("text/html", this.getHTML());
editorPane.setEditable (false);

new HyperlinkEventInvoker (editorPane,
HyperlinkEventInvoker.HYPERLINK ACTIVATED,
ui, "setBorder",
BorderFactory.createLineBorder (Color.red)) ;
new HyperlinkEventInvoker (editorPane,
HyperlinkEventInvoker.HYPERLINK ENTERED,
ui, "setBorder",
BorderFactory.createEtchedBorder()) ;
new HyperlinkEventInvoker (editorPane,
HyperlinkEventInvoker.HYPERLINK EXITED,
ui, "setBorder", BorderFactory.createEmptyBorder());

ui.add (editorPane) ;

return ui;

}

private String getHTML () {
return "<html><body>" +
"<p>This contains a link</p>" +
"</html></body>";
}

public static void main(String[] args) {
new HyperlinkEventInvokerExample () ;

}

So, this is pretty cool, we can see that each state of a HyperLinkEvent is handled quite easily. But,

what if there is more than one link and you need to react to them separately?

In addition to the mask, HyperlinkEventInvoker also filters its behavior based upon a URL matching
pattern. The default pattern is “.*”, which matches everything, but you can change this via the
setUrlMatchPattern method:

*77

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Container;

import javax.swing.BorderFactory;
import javax.swing.JEditorPane;
import javax.swing.JPanel;

import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.HyperlinkEventInvoker;

public class HyperlinkEventInvokerExample? extends JMFrame {
public HyperlinkEventInvokerExample2 () {
super ("HyperlinkEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new BorderLayout());

JEditorPane editorPane = new JEditorPane ("text/html", this.getHTML());
editorPane.setEditable (false);

HyperlinkEventInvoker firstLink =
new HyperlinkEventInvoker (editorPane,
HyperlinkEventInvoker.HYPERLINK ENTERED,
ui, "setBorder",
BorderFactory.createLineBorder (Color.red)) ;
firstlLink.setUrlMatchPattern("1linkl1l");

HyperlinkEventInvoker secondLink =
new HyperlinkEventInvoker (editorPane,
HyperlinkEventInvoker.HYPERLINK ENTERED,
ui, "setBorder",
BorderFactory.createLineBorder (Color.green)) ;
secondLink.setUrlMatchPattern("1ink[23]");

ui.add (editorPane) ;

return ui;

}

private String getHTML () {
return "<html><body>" +
"<p>This contains a link</p>" +
"<p>This contains another link</p>" +
"<p>This contains yet another link</p>" +
"</html></body>";
}

public static void main(String[] args) {
new HyperlinkEventInvokerExample?2 () ;

}

As you can see, the first HyperlinkEventInvoker triggers only on hover over the URL of “link1”, but
the second one triggers if the user hovers over either the link with the URL of “link2” or “link3”.
Most certainly, if the HyperlinkEventInvoker is targeting the activation actions, then the URL match

pattern should match each link's URL independently.

InternalFrameEventinvoker

Internal frames produce quite a few events, and there may be many reasons to react to any of them. For
example, if the frame is iconified, maybe an animation routine needs to pause until it is de-iconified.
Handling of these events is the job InternalFrameEventInvoker. The masks for instances of this
class are:

FRAME ACTIVATED
FRAME CLOSED
FRAME CLOSING
FRAME DEACTIVATED
FRAME DEICONIFIED
FRAME ICONIFIED
FRAME OPENED

Again, these can be combined with the “|” character if you want to route the events to the same method:

import java.awt.Color;
import java.awt.Container;
import java.awt.Dimension;

import javax.swing.JDesktopPane;
import javax.swing.JInternalFrame;

import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.InternalFrameEventInvoker;

public class InternalFrameEventInvokerExample extends JMFrame {
public InternalFrameEventInvokerExample () {
super ("InternalFrameEventInvokerExample") ;

}

public Container buildGUI () {
JDesktopPane pane = new JDesktopPane();

JInternalFrame iFrame = new JInternalFrame ("Test Frame",

false, false, true, true);
iFrame.setVisible (true) ;
iFrame.setSize (200, 200);

new InternalFrameEventInvoker (iFrame,
InternalFrameEventInvoker.FRAME ICONIFIED,
pane, "setBackground", Color.RED);
new InternalFrameEventInvoker (iFrame,
InternalFrameEventInvoker.FRAME DEICONIFIED,
pane, "setBackground", Color.WHITE);

pane.add (iFrame) ;
pane.setPreferredSize (new Dimension (250, 250));

return pane;

}

public static void main(String[] args) {
new InternalFrameEventInvokerExample () ;
}
}

The usage 1s quite obvious. Just figure out the best use case for your applications.

KeyEventinvoker

As its name sounds, KeyEventInvoker targets a method when one of the three events of the KeyEvent
occurs. Like the HyperLinkEventInvoker, you can also filter based upon one or more key codes. By
default, the target method is invoked based upon the designated masked event when any key is pressed.
The masks for this class are:

KEY TYPED
KEY PRESSED
KEY RELEASED

The below example shows both ways to setup the kKeyEventInvoker with a key filter. Just keep in
mind that if you just want to react to any key being pressed, don't define a key filter, or set the filter to
an empty array:

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.event.KeyEvent;

import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

import com.jmorgan.swing.JMFrame;
import com.jmorgan.swing.event.KeyEventInvoker;

public class KeyEventInvokerExample extends JMFrame ({
public KeyEventInvokerExample () {
super ("KeyEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new BorderLayout ());

JTextField textField = new JTextField("Type \"alb2c3\" here");
JLabel label = new JLabel () ;

KeyEventInvoker letters =
new KeyEventInvoker (textField,
KeyEventInvoker.KEY RELEASED,
label, "setText", "A letter was pressed");
letters.setKeyFilter (new int[] { KeyEvent.VK A,
KeyEvent.VK B,
KeyEvent.VK C });

KeyEventInvoker numbers =
new KeyEventInvoker (textField,
KeyEventInvoker.KEY RELEASED,
label, "setText", "A number was pressed");
numbers.addKeyFilter (KeyEvent.VK 1I);
numbers.addKeyFilter (KeyEvent.VK 2);
numbers.addKeyFilter (KeyEvent.VK 3);

ui.add(textField, BorderLayout.NORTH) ;
ui.add(label, BorderLayout.CENTER) ;

uil.setPreferredSize (new Dimension (200, 200));

return ui;

}

public static void main(String[] args) {
new KeyEventInvokerExample () ;

}

MouseEventinvoker

The MouseEventInvoker 1S another that fires quite a few events. The mask options for the
MouseEventInvoker are:

MOUSE CLICKED
MOUSE ENTERED
MOUSE EXITED

MOUSE PRESSED
MOUSE RELEASED

Like the other masked event invokers, the masks can be combined. Instances of this class also support
an optional hot spot relative to the coordinates of the component. If no hot spot is defined, then
anywhere the event occurs over the component is fair game. Any hot spot defined controls the limits of
where the event is allowed to occur over the component. Note, too, that the hot spot is a shape, which
enables the most flexibility when defining a hot spot.

In this example, you will see an interesting combination of DEF elements and begin to experience a bit
more of the power and flexibility of the DEF:

import java.awt.Container;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Rectangle;

import javax.swing.JLabel;
import javax.swing.JPanel;

import com.jmorgan.lang.MethodInvoker;

import com.jmorgan.swing.JMFrame;

import com.jmorgan.swing.event.ComponentEventInvoker;
import com.jmorgan.swing.event.MouseEventInvoker;

public class MouseEventInvokerExample extends JMFrame {
public MouseEventInvokerExample () {
super ("MouseEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new GridLayout (1, 1));

JLabel mouseTarget =
new JLabel ("Move the mouse and click on this label", JLabel.CENTER) ;

new MouseEventInvoker (mouseTarget, MouseEventInvoker.MOUSE ENTERED,
mouseTarget, "setText",
"Mouse Entered");

new MouseEventInvoker (mouseTarget, MouseEventInvoker.MOUSE EXITED,
mouseTarget, "setText",
"Mouse Exited");

MouseEventInvoker left =
new MouseEventInvoker (mouseTarget, MouseEventInvoker.MOUSE CLICKED,
mouseTarget, "setText",
"Mouse Clicked In Left Side");

MouseEventInvoker right =
new MouseEventInvoker (mouseTarget, MouseEventInvoker.MOUSE CLICKED,
mouseTarget, "setText",
"Mouse Clicked In Right Side");

MethodInvoker mi = new MethodInvoker (mouseTarget, "getSize");

new ComponentEventInvoker (mouseTarget,
ComponentEventInvoker.COMPONENT RESIZED,
this, "setHotSpot", left, right, mi);

ui.add (mouseTarget) ;
ul.setPreferredSize (new Dimension (300, 100));

return ui;

}

private void setHotSpot (MouseEventInvoker left,
MouseEventInvoker right,
Dimension shapeSize) {
int halfWidth = shapeSize.width / 2;
left.setHotSpot (new Rectangle (new Dimension (halfWidth, shapeSize.height)));
right.setHotSpot (new Rectangle (halfWidth, 0, halfWidth, shapeSize.height));
}

public static void main (String[] args) {
new MouseEventInvokerExample () ;

}

Play a bit with this example. When you move the mouse into and out of the label, anywhere, you see
the message “Mouse Entered” and “Mouse Exited”. However, only when you click on the left side of
the label do you see the “Mouse Clicked In Left Side”, and only when you click on the right side of the
label do you see the “Mouse Clicked In Right Side”. This is because there are two
MouseEventInvoker instances, one with a hot spot defined to trigger when the mouse is only on the
left, and one with a hot spot only on the right.

The hot spot shapes are defined when the label is resized, triggered by a ComponentEventInvoker that
calls the setHotspot method of the class. The ComponentEventInvoker passes references to the
MouseEventInvokers for the left and right, and also passes the size of the component after it is
resized. The ComponentEventInvoker obtains the current size of the component through the
MethodInvoker referencing the getsize method of the label. This maintains the hot spots fully on the
left and right regardless of the size of the component, rather than a fixed size at the time of
construction.

MouseMotionEventinvoker

The MouseMotionEventInvoker is identical in concepttolhe MouseEventInvoker. This one onb/
contains two mask values:

MOUSE MOVED
MOUSE DRAGGED

And just like the MouseEventInvoker, a Shape can be used to limit the area where the invoker will
trigger. The example, again extremely similar to the example given for MouseEventInvoker,
demonstrates the features of this class:

import java.awt.Container;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Rectangle;

import javax.swing.JLabel;
import javax.swing.JPanel;

import com.jmorgan.lang.MethodInvoker;

import com.jmorgan.swing.JMFrame;

import com.jmorgan.swing.event.ComponentEventInvoker;
import com.jmorgan.swing.event.MouseMotionEventInvoker;

public class MouseMotionEventInvokerExample extends JMFrame {
public MouseMotionEventInvokerExample () {
super ("MouseMotionEventInvokerExample") ;

}

public Container buildGUI () {
JPanel ui = new JPanel (new GridLayout(l, 1));

JLabel mouseTarget =
new JLabel ("Move the mouse and drag on this label", JLabel.CENTER) ;

new MouseMotionEventInvoker (mouseTarget,
MouseMotionEventInvoker.MOUSE DRAGGED,
mouseTarget, "setText",
"Mouse Dragged") ;

MouseMotionEventInvoker left =
new MouseMotionEventInvoker (mouseTarget,
MouseMotionEventInvoker.MOUSE MOVED,
mouseTarget, "setText",
"Mouse Moved In Left Side");

MouseMotionEventInvoker right =
new MouseMotionEventInvoker (mouseTarget,
MouseMotionEventInvoker.MOUSE MOVED,
mouseTarget, "setText",
"Mouse Moved In Right Side");

MethodInvoker mi = new MethodInvoker (mouseTarget, "getSize");

new ComponentEventInvoker (mouseTarget,
ComponentEventInvoker.COMPONENT RESIZED,
this, "setHotSpot", left, right, mi);

ui.add (mouseTarget) ;
ul.setPreferredSize (new Dimension (300, 100));

return ui;

}

private void setHotSpot (MouseMotionEventInvoker left,
MouseMotionEventInvoker right,
Dimension shapeSize) {
int halfWidth = shapeSize.width / 2;
left.setHotSpot (new Rectangle (new Dimension (halfWidth, shapeSize.height)));
right.setHotSpot (new Rectangle (halfWidth, 0, halfWidth, shapeSize.height));
}

public static void main(String[] args) {
new MouseMotionEventInvokerExample () ;

}

Extending AbstractEventinvoker and AbstractMaskedEventinvoker

In its current version, every event possible is not covered by the DEF. Being that you can roll your
own events, you might want to be able to extend the DEF. A couple of things to note to help you
conform to the development pattern these classes expect of an event producer.

Generally speaking, the pattern should mimic that of the delegation event mechanisms built into Java.
There should be an event listener interface, an event object, and an event producer. The event producer
should have a method allowing event listeners to be added to and removed from the producer. If you
do that, the rest will fall into place nicely.

So, let's consider a scenario. Suppose you create a generic Spinner component that will allow any
other component to be attached to it. The Spinner component will display an up arrow and a down
arrow next to the component attached to it and produce events when the spin buttons are clicked. Since
the spinner doesn't know exactly what it is spinning, it exposes a delegation event model having a
SpinListener that has two methods, spinUp and spinDown.

Since the spinner is the event producer, the class will contain two methods, addSpinListener and
removeSpinListener to enable spinListeners to be registered to it. Both methods take a reference
to a spinListener and perform the appropriate behavior relative to the semantics of the registration
method.

When the up arrow is clicked, the spinner creates a spinEvent object and passes it to all registered
SpinListener's spinUp method. Likewise, when the down arrow is clicked, a spinEvent is created
and passed to all registered spinListener's spinDown method. So the spinListener and SpinEvent
classes might look something like this:

public interface SpinlListener ({
/** Notification for a spin up.
@param e A SpinEvent.
*/
public void spinUp (SpinEvent e);

/** Notification for a spin down.
@param e A SpinEvent.

*/

public void spinDown (SpinEvent e);

public class SpinEvent {
private Component source;
private int spinDirection;

/** Spin event constant indicating the the spin direction is up */
public static final int SPINUP = 0;

/** Spin event constant indicating the the spin direction is down */
public static final int SPINDOWN = 1;

/** Returns an instance to a SpinEvent
@param source A source Component.
@param spinDirection An int, 0 = SPINUP, 1 = SPINDOWN.

*/

public SpinEvent (Component source, int spinDirection) {
this.source = source;
this.spinDirection = spinDirection;

}

/** Returns a number representing the spin direction. The
value matches either SpinEvent.SPINUP (0), or
SpinEven.SPINDOWN (1).

@return int The spin direction.
@see #SPINUP
@see #SPINDOWN
*/
public int getSpinDirection() { return this.spinDirection; }

/** Returns the source for which the spin is ocurring.
@return Component The source component

*/

public Component getSource () { return this.source; }

So, now you want to extend the DEF to support this new event. In the same pattern as exists within the
DEF, maybe you decide to name the new invoker, SpinEventInvoker. Since the SpinListener
interface contains more than one method, you should extend this class from
AbstractMaskedEventInvoker, and define a couple of mask constants that can safely be OR'd
together to combine a mask.

All event invokers need to know the names of the add and remove listener registration methods. In
short, the AbstractEventInvoker provides a dynamic registration of its subclasses to the event
producer, so your custom extensions will need to provide these names. The other thing the concrete

extensions need to do is to implement the desired listener interface. So, your spinEventInvoker will
very likely look like this:

import com.jmorgan.swing.spinner.SpinEvent;
import com.jmorgan.swing.spinner.SpinListener;

public class SpinEventInvoker extends AbstractMaskedEventInvoker<SpinEvent>
implements SpinListener {
public static final int SPIN UP = 1;
public static final int SPIN DOWN = 2;

public SpinEventInvoker (Object eventProducer, int eventMask,
Object target, String methodName) {
super (eventProducer, eventMask, target, methodName) ;
this.setlListenerAddRemoveMethodNames ("addSpinListener", "removeSpinListener");

}

public SpinEventInvoker (Object eventProducer, int eventMask,

Object target, String methodName, Object... arguments) ({
super (eventProducer, eventMask, target, methodName, arguments);
this.setListenerAddRemoveMethodNames ("addSpinListener", "removeSpinListener");

}

public void spinUp (SpinEvent e) {
this.setEvent (e);
this.invokeForEvent (SPIN UP);

}

public void spinDown (SpinEvent e) {
this.setEvent (e);
this.invokeForEvent (SPIN DOWN) ;

And, that's it! Not really rocket science, and no wizardry. Very, very simple, but your new class now
contains all of the basic features the event invokers within the DEF contains, including the ability to
pass arguments to the target methods, and accept MethodInvoker instances as parameter value
delegates for those arguments, all in just a handful of lines of code!

Chapter 8 — Things That Go Wrong

Oops!

There are many things that can go wrong, and thus there are some things you need know so you can tell
what is happening within the guts of the DEF. The DEF makes every effort possible to locate the
method you are after. When you give AsynchMethodInvoker Or MethodInvoker the name of a
method, it attempts to resolve the method reference during construction. However, when it cannot
locate the method, it will throw a RuntimeException wrapped around a NoSuchMethodException.
Here is a quick example:

import java.util.Calendar;
import com.jmorgan.lang.MethodInvoker;

public class NoSuchMethodExceptionExample {
public static void main (String[] args) {
Calendar ¢ = Calendar.getInstance();
new MethodInvoker (c, "BlahBlah");

Running this throws this exception:

Exception in thread "main" java.lang.RuntimeException: The method BlahBlah does not
exist within java.util.GregorianCalendar

at
com.jmorgan.lang.AbstractMethodInvoker.resolveMethod (AbstractMethodInvoker.java:183

)

at
com.jmorgan.lang.AbstractMethodInvoker.<init> (AbstractMethodInvoker.java:128)
at com.jmorgan.lang.MethodInvoker.<init> (MethodInvoker.java:99)
at
defusermanualsamples.NoSuchMethodExceptionExample.main (NoSuchMethodExceptionExample
.java:10)
Caused by: Java.lang.NoSuchMethodException: The method BlahBlah () does not exist
within java.lang.Object
at
com.jmorgan.lang.AbstractMethodInvoker.getMethod (AbstractMethodInvoker.java:387)
at
com.jmorgan.lang.AbstractMethodInvoker.getMethod (AbstractMethodInvoker.java:370)
at
com.jmorgan.lang.AbstractMethodInvoker.getMethod (AbstractMethodInvoker.java:370)
at
com.jmorgan.lang.AbstractMethodInvoker.resolveMethod (AbstractMethodInvoker.java:157

)

3 more

The NosuchMethodException gives the full message signature, but the incorrect class name for which
the method is being resolved. The rRuntimeException resolves the actual class name. This is because
the actual method resolution algorithm will recursively search all ancestors all the way up through

Object. When that fails, it throws the NoSuchMethodException, and that always happens after failing
to find the method in object. This recursive ancestor search is the last-ditch effort to locate the
method, so, upon receiving a NoSuchMethodException, reports the type of the initial target. This can
be very helpful when you have a number of dynamic calls within a multi-threaded application, which
happens quite often within an application heavily using the DEF, and definitely within UI applications.

You can help the DEF in some ways. First, AsynchMethodInvoker and MethodInvoker will accept
either the name of the method as a string, or a direct reference to a Method object. Providing the pre-
resolved Method reference bypasses the method resolution algorithm, thus preventing a
NoSuchMethodException.

When providing the pre-resolved method reference, but you pass in the incorrect argument types for the
method, you will get an I1legalAargumentException. Here is an example that attempts to pass a
double instead of an int to a MethodInvoker with a pre-resolved Method:

import java.lang.reflect.Method;
import java.util.Calendar;

import com.jmorgan.lang.MethodInvoker;

public class IllegalArgumentExceptionExample {
public static void main(String[] args) {
Calendar c¢ = Calendar.getInstance();
try {
Method targetMethod =
c.getClass () .getMethod ("set",
new Class[] { int.class, int.class, int.class });
new MethodInvoker (c, targetMethod, 0, 0.0, 0).invoke();
}

catch (Exception e) {

}
}

Obfuscation

Obfuscation tools can really mess this up, so you need to ensure all methods invoked through the DEF
are kept. There is an annotation within the DEF, ereflected, that will help you mark methods
invoked by the DEF. Methods you cannot mark, such as those from a third-party API or those classes
embodied within Java itself, that are the target of the DEF, should be kept as is if being changed by an
obfuscator. If you are diligent, though, on your own methods, marking them with the erReflected
annotation will allow you to capture all of those in one place within your obfuscation tool.

Alphabetical Index

ADSACtEVENTINVOKETcutiiiiiiiiieeiiieiiecie ettt et te ettt essaeebeesabeeeannaeeeans 65p., 73, 97p.
ACHIONLISTENET ANd.....eiiiiiiiiiii ettt ettt ettt b et e et e et eeeeaeee 66
GOLATZUITICNES. ..ceeutieeiiiie et te ettt ettt ettt ettt e ettt e ettt e et eeebbeeea bt e e eataeesabeeesteeeasseeensbeesnnsbeeaesennnsbneeesennnnnes 66
EEtMELNOAINGIMIC.c.eviiiiiieciie et e et e et e e e ta e e eaaeeetaeesssaeessseeessseeesannssaneeeeanes 66
oL 1 o AU PUR TP 66
L1IN) IR s 1« O RS 66p.
INVOKESYNChIONOUSLY f1aZ......oiiiiiiiiiii ettt ettt et e e ee e e 67
S AN e 1001 1L 66
SCLEVENTIPTOMUCETttt sttt et sbe e 66
$etINVOKESYNChroNOUSTY and..........coouiiiiiiieiii ettt e e e e e s aaeeeenes 67
setListenerAddRemoveMEethOdINAIMES..........c.ceeiiiiieiiiiiieeie ettt et 66
SEEMELNOANAIME. ...ttt ettt b e st e bt e et e e bt e sateesbeeenbeanaeeenee 66
SEUTATEEL. ...ttt ettt e ettt e ettt e e bt e e et e e ettt e e ab e e e bt e e ettt e e e e e bbb eeeeeennaeeas 66

AbstractMaskedEVEntINVOKET............coouiiiiiiieciie ettt e e e e eaaeee e 82, 97pp.
ChangeEVEeNt and...........cc.eeiuiiiiiiiieeie ettt e st e et e st e e bt e st e esbeestaeenbeenseeenseensaesnseeneeennnes 82
TEEMEVENE QNIA. ...ttt et ettt et e et e bt e et e bt st eesae e e b s 82
ListSelectioNEVENt aNd..........ooiiiiiiiiiiiiieie ettt ettt ettt e et e abeenbeesnbeaeenes 82

ACHONEVENEINVOKET ...ttt ettt et e et e e eta e e e s neaeaeesesnnsseeaaeennes 66p., 73pp.
ACHONEVENL ...ttt et ettt e et e e bt e s st e st e esateenseessbeenseensseenseensseenseesnneeas 73pp.
F 110101 5 1<) 1 1<) SR PURP 73p., 76
ACTIONPETTOIMEM.c.eiiiiiiieiee ettt ettt ettt et e b e 73
actionPerformed and............ocooiiiiiiiii et 67

AAACOMPATEPTOPETLY....ccueieiieeiieeiie ettt ettt et e et e e bt e s tae e bt e esaeeseesabeesseesaseesseeessseeesnseaesnsseeennes 34

AgEIEZaAtOTFUNCHION. .. .coiiiiiiiie ettt e et e et e e et e e e teeesbaeesnseeeesseeessseeeennssaaeeeeennnsseeeens 52pp.
aggregate MEthod ANnd...........oooiiiiiiiii ettt et et 55
Start MEthOA ANd.......coiiiiiiiiiececee ettt e e et e e et e e s tae e e e enaaaaeeeeennraeeeas S54p.

ANYODJECICOMPATALOT ... eieitieeiiieiieeiieetteeteeteesteeteestteeteessaeebeessteesseesseessseeseeenseenseesnseansseesansees 35p., 38
ClassCasStEXCEPLION ANd........cccviiiiiiieiiiieciieecieeeeiee et e et eeee e et e e s e e esaaeeesaaeeesaeeesaaaeeesssseaeesennsnees 36
NUITHANAIING QNd.....coiiiiiiiiiie ettt ettt e et staeebe e et e e e e nnbeeeenneeas 35p.
SCENUITHANAIING.veeeeeieee ettt et e e e st e e sabeeesbae e saeeesaeeenssaesnsaeensses 35p.

AsynchMethodINVOKET...........c.cooiieriiiiieiiecieceecie e 5, 7pp., 20pp., 24p., 48p., 86p., 100p.
Canceling an Asynchronous Process and.............cocuieviiiiiiiieiiiieeciee et eaee e e e 16
FUunction POINETS and...........cceiiiiiiiiiiiieiieeie ettt ettt ettt ettt e eebeesbeeenbeensaeennseeeenene 13
GELRETUINVAIUC.......ooiiiiiiiece et s e s ar e e e e e nnaaeeeeeas 5,11, 20, 24
GELREIUIMIVAIUC ..o.eiiiiiiiiiee ettt ettt e et e s e e b e e s saeeabeesasaeeeensaeeennnee 20
Handling variable arguments and..............cccviiiiiiiiiiiiiiie et naaaaa e 12
RaSCOMPIELEA.eoiieiiieiiieie et ettt ettt et sateebeeeensaeeeensaeaens 5, 10p., 18, 24
INVOKEMELhOd ANd......couiiiiiii ettt sttt e et sb e sate e snbeee e 18
Multiple Parameter PASSING........cc.eeiiiiiiiiiiieiiecie ettt ettt et e e et e st e e bt e ssbeeseesaaeenseasnseaeenes 10
Restarting an ASyNChIonOUS PTOCESS.ccuviiiiiiiiiieeiiie ettt et e e saaeeeeaaae s 17
Return ValUes and.........coouiiuiiiiiiiiiiiieeee ettt sttt sttt st e 11
110 D 1S A 1 Vo KPR PSR 18
USING INt PATAMELETS WIth......iiiiiiiiiiiie ettt ete bt e st e eteesabeesbeesnseenseennnes 11
T O 1 s 1) (T IO 16, 18

BeanCoOmMPATAtOTL.......cccuuiiiiiieeiieeeite ettt ettt ettt ettt e st e e st e e ab e e e st e e ettt e sateesnnbb e e e e e e nnnbbaeeeeennnnees 33p.
T [0 (@10 1010121 () 3 1) o) 8 LTSRS SRR 34

AAACOMPATEPTOPETLYeieiiieiiie ettt ettt et e et e st e et e e abeesbeesabeenseesnseenseessseenseeeennees 34

ClearComPATEPTOPEITIES.eeiiiiitieeii ettt ettt ettt et e e bt e seesabe e bt e easbeeeensaeeeensseeennnees 34

SCECOMPATEPTOPEILIES. ... veeeiiieeiiie et e ettt ettt e e et e e et e e e ae e e taeeeteeeesaeessseeesssaeesnsaeeanseeensseeensseesannes 35
BeaANINAEXET ...ttt e e e ettt e e e e e e e et et e e s e e e aaaaaaas 60, 63
getindexOf method and.............oooiiieeiioc e e e e e e e e e enes 60
INAEX AN, sttt h et et e e e 60
MethOdINVOKET @Nd.......ooiiiiiiiieee ettt ettt e et e e et e e e 60
BeanPropertyLOader.ccueiiiiiiieiie ettt sttt ebeeeabe e enbeeeennne 61pp.
1o 34 (0 0131 B (G 1 T OSSPSR 61
1e1 (0] o1 1 A 11 T OSSP PRSP 61
BTN 1] e (0] 015 (A 2 o TP P PP 61, 63p.
allowMap MEthOd And.........c.coouiiiiiiiicie ettt ettt e e e e 61
getMap MEthOd ANd..........c.oiiiiiiieee e e e e aae e e aaeeeeeenes 61
getPropertyNameFor method and............o.oooiiiiiiiiiiiii e 61p.
getValueFor method and............oooviiiiiiiiiie e e e 61p.
loadBean Method and..........co.eioiiiiiiiiii e e e 61
BRaANSEIVICE. ...eiiiiiiiiiieeeeee e e e e e e e e e e e e aaaaaas 26pp., 33,43, 61
Accessing Nested Values and...........oceeeiiiiiiiiieniieieeee ettt ettt et e et e e e eeareeens 30
GEEBEAN ANA.... ..o e et e e et e e e ba e e e aaeeabeeeeennaaeeeeeanes 26
EETBEANACCESSOTS ANA.....cuiiiiiiiiieiieeie ettt ettt e et et e st e e bt e eabeebeesabeenseeenbeeseesnseesansaeennns 31
etBEANMULALOTS ANd......cciiiiiiiieeiieecee et e et e e st e e e e e s e e e nnb e e e nbaeenreeenaeaeean 32
GEEEVENTIPTOUCET. ... oottt ettt et e st e bt e s et e et e e e nba e e e nbeeeensaeeennnes 66
Jod10 5 P o (@016 [3 T RSP 32
getMutablePropertyNames and...........oceeiiieriieiiiiiiecie ettt ettt e e eeneeeenee 32
EtPrOPertyNaAMES ANd.......cccviiiiiiiiiie ettt et s e e e et a e e e e ntrraeeeennnnnes 32
GEIPTOPETEYTYPE QNA.....eiiiiiiiiiie et ettt ettt e st e e bt e s nbeebeessbeenbeasnreenns 31
GEEPTOPETEYVAIUC.eiieiieee ettt et e e e e ee e e e nnees 26pp., 33,43
Obtaining Indexed Values and............ccoeeiieiiiiiiiniiieieeeee ettt e 28
SCtPTOPEITYVAlUC ANd......oiiiiiiiiiieciecce et e et e et e e et e e e nteeenaeeennaaaeeeannes 33
EOSEIINE ANA. ..ottt et e et e et e et e e bt e et e e teesabe e bt e enbeentaeeennbaeeennbeeeannaeeenn 32
USING EXPreSSIONS QN.....cccviiiiiiiiiiiieeiieeeiiee et et e et e e eteeesteeesaeeesaseeessseeesseeesseesesnssseeeeesssssneeesas 30
BeANUTIIS. ...ttt ettt e e e e e e ettt et e e e ee e et bttt eeeesse s abtteeeeeeeaaararaaeaaaae 26,33
Chan@eEvVeNtINVOKET...........coiiiiieiie ettt e e e st e e st e e e ssteee e e enssaeeeeeenssseeeeeannes 77p.
ChangeEVeNt and............c.ioiiiiiiiiieeie ettt ettt et e st e e beesaeeesbeesaeeenbeesseeenbeenseesnreeeans 67,77
Chan@eLiSteNer and..........cccvieeiieeeiiieeeiieeeieeeeiee ettt e ettt e et e e sbeeesabeeessseeeasseeessaeenssasassaessennssnees 5,67
COllECtIONA ZETEEALOTeeeieeitieiieeteeeiie et e eiteeteeeteeebe e tteesbeenseeenseasseesaseeseesnseesanseeesnsseeessseeeanes 38, S2pp.
COIIECHION AN..... ettt et e h e et e b e st e e bt e e s bt e s bt e sabeesbeeeabeenaeeeaee 52
COllECtiONCOMPATALOT......c.tieiiieiieeiteetee et eieeeteeite et estteeate e seessbeesseeenseenseeanseesseesnseenseeenseenssesnsaeesnseeaans 37
MU handling and..........c.ooeiiiiiiie et e e et e s e e e e e e e e e nnraeeaeean 37
COllECtIONE X ECULOTeiiiiiiiieiiiieee ettt e e e e e et ee e e e s e sttt bte e et eesaaasaeaessnsnnsnnnes 38, 46, 47p.
COllECHIONEXECULOT.eeitieiieeie ettt et ettt e bt e et e bt e st e e bt e e st e e e eaaee 45
EXECULE.veentteeuteeette et et ettt ettt et e et eeat e bt e e at e e bt e eae e e bt e eat e e bt e e at e e bt e e he e e bt e e ae e e bt e sat e et e e bt e e bt e nbeeebeeeeaneee 46
PTOCESSELEINENL........iiiiiiiiiiiieee ettt e et e et e e et e e staeeenaaeeenseeessseeeasseeensaaeeas 46
COlleCtiON PTOPEITYSEIECTIOT. ... i eiieeiiieiie ettt ettt ettt ettt e et et e et e e sbeeesbeesseesnbeeeensseeesnnseeens 51
BeanService eXpreSSIONS ANd..........iiecvieeiiieeiieeeiieeeieeesieeesieeesteeesaeeetaeesaaeeeaaeeenbaaeeeeennnaaaaeeeannnes 51
COllECtIONSELECTOT. ...ttt ettt ettt et et e et e et essbesabeesaeeesbeessbesnseesseaesansaeennns 38p., 46
etSElECtEAEICMENTS.ccciiiiiieecee e e et e e e tre e e raaeeena 38pp., 50
ISELCMENtSEIECTEA. ... e eiieeiiieiiee ettt ettt ettt e e e e e es 38p., 41
(10 11STe7 5 0] s 015151 /SRS 55, 58

BeanServiCe And.......coooviiiiiiiiiiiii e 58

PaIT ettt ettt et et et e et e ettt et e et e et s 56
Combining Selectors and EXECULOTS.c.coiiiiiiiiiiiiiiecie ettt ettt eerebeeesebeeeeaes 49
LO10) 0010121 21 o) (<SRRI 35, 36, 43
L010) 1010121 110) OO SRS RU PRSP 36p.
ComponentEVEeNtINVOKET.........cc.eiiiiiiiiiecee et e e e erraee e e e e 82pp., 94pp.

COMPONENT HIDDEN MASK.....cccutrtiriiiiiiientieienieniteie ettt sttt sttt 83

COMPONENT _MOVED MASK......ccuiiiiiiiitieiieieeiiese ettt ettt seee et e eeesaeeeneeenneens 83pp.

COMPONENT _RESIZED MASK.....cccutitiriiiiiiieniieieeienieeie ettt sttt 83, 85, 95p.

COMPONENT _SHOWN MASK......eitiitieiieitieieeiesteeie ettt ettt e e et eaesseeaeestesseensesneesneeeenneeennes 83

ComponeNtLASTENET ANM........ccuiiiiieiiiieiieie ettt et ettt e st e et e sateesnbaeeeennaeeeanbeeeeanseeas 5,82

componentMoOVed EVENT ANd.........cccuiiiiiiieiiieeeiieeiee et ee et e et e et e e et e e e eaaeeeeeennraeeeeeennnaeas 84
CoNtAINEIEVENTINVOKETc..iiiiiiiiieiie ettt ettt et e et e s e e e teesaeeenbeesseeensaeeenneeaens 86p.

COMPONENT _ADDED MASK.....uteitiiiiitieiieiesiieie ettt ettt sttt ssee s et eneeneee e 86

COMPONENT REMOVED MASK......cctiitiiiiriiiiinieniieie ettt sttt st sttt 86

ContaINETrEVENT QNd.....co.uiiiiiiiiiiiee ettt ettt et sttt e e ab e e et 87

ContaiNErLAStENET ANd......couiiiiiriiiiieiieiteee ettt sttt sttt e st e s 86
COOKIEBEANMEAD.tiieiiieeiiie ettt ettt e et e et e et e e e abeeesteeessaeeensseesnseeaansaeenssaaeeeannssseeeeeannes 62pp.

allowMap MEthod And..........c.cooiiiiiiiiieiee e et et e e 63

getValueFor Method and............coouiiiiiiiiie et et e e e e s 63
COUNTAGGIEZALOTeeutiieiiie ettt ettt et ettt e ettt e et e e sabee e s bt e esabeeeabeesabeesabbeesabteesabeeesnseeenaseeennnreeas 38,53
D 1M Y o TS 0101 NS o £ PR 69pp.

IMPIEMENLAtIONS OF......iiiiiiiiiiiii ettt ettt e et e s e e beesateesbeessbeeseesnseenseannseeennes 70
D153 (S 1 Lo <] (11 [USSR 42p.

(07070010 F: 1 110 SO PPOOPPRUPPPUPRRNt 42

SELECT IF EQUAL TOu..cuiiiieieiieieeeteie ettt ettt ettt ettt e s eneeesnseennneas 42p.

SELECT IF GREATER THAN......coitiiitieeet ettt sttt st 42p.

SELECT IF _LESS THAN ...ttt ettt ettt ettt ettt eate st esteentasaeesnbeeenseeensaeeneeens 42p.
AYNAMICPTOCESS. ...ttt ettt et e et e et e st e et e e s et e esbeessteenseessbeesansbeeennseeesnseeaennses 21p.
DYNAMICPTOCESS. ... eeeviieeiieeeiie ettt eee et e et e e te e et e e steeesstaeesnsaeessseeeeennssnaaaeeennnns 16, 20pp., 88p.

addProcessMethod and...........cocoiiiiiiiiiiiii e 21

11 10%0) =T RRRRRRTRNt 22,25

TNVOKE Q1. b ettt b et e h e s bt e bt e a e e bt et e eate st e et e ettt eneeenee 21

MethOdINVOKET ANd.......oiiiiiiiii ettt ettt ettt e et e et e e et 21

MethodInvoker as surrogate for parameter ValUue............coccuieuieriiiiieiiieese e 21
Re L] <] (<o 10) USSP 41
FOCUSEVENINVOKET......c..eiiiiiiiiieiie ettt ettt ettt et e st e e bt e s aaeeabaeeensaeeennneeean 88p.

FOCUS _GAINED MASK...cuttitiiiieiieieieee ettt ettt sttt ettt te e e e neeeseeenneeenee 88

FOCUS LOST MASK....tetiieitieiie ettt ettt ettt ettt e seteesteaesbeesseesnbeesseeenseesseesnseensseeenns 88
FTaACION ClaSS...iuiiiiiiiiieiee ettt ettt e et e e et e e e teeessteeeesseeesseeenssaeesssaesansssaaaesennssseeeesannes 53p.
GEUTRICAACOUNL.eiiiiieiiieee ettt ettt ettt et e et eeae e e b e e saeeabeeaeeenbeesseeenseesseesnseesnnees 9

00 (16 (01 o TSRS 9
HttpRequestParameterBeanMap...........c.oooiiiiiiiiiiiiieiiieeteeeeeee ettt s 63p.

allowMap Method and...........c.cooiiiiiiiii e e e e e et a e e e e nnnes 63

getValueFor Method and.............cooiiiiiiiiii et sttt e 63

HttpServIetReqUESt and..........cooviiiiiiieiee et e e e e e e et e e et e e e nnraeaaeeas 63
HyperliNKEVEeNtINVOKET..........coiiiiiiiiecii ettt ettt st e et e e et e e entaeeennees 90p.

HYPERLINK ACTIVATED MASK......ccutiiiiiiitieieeiesiteie ettt ettt sttt e sneeesnneeens 90

HYPERLINK ENTERED MASK......ccutitiiiiiiiiinieieiieseeie ettt sttt et s 90p.

HYPERLINK EXITED MaSK......ccocciiiiiiiiniiiiiiicieeeeeseett ettt 90

HyperLINKEVENt and.........c.coooiiiiiiiiecii ettt ettt e e e e e e e ssntaa e e e s ennsanaeeeannns 90
SEtUTIMAtChPattern and...........cocvieiuiiiiiiiieie ettt ettt e et e et e eabeesbee e b eeeennees 91
HyperLINKEVENtINVOKET........cccuiiiiiieciiecee ettt et eate e e e e e snraeaeeeeneaneeeas 93
[egal ATGUMENEEXCEPLION.ccutiiiiiiiieiieeieecite ettt ettt ettt e e e tte et e e sbaeeabe e st e ennaeesensaeeeenneeas 101
T) OO RRRRRRRRUR 59, 63
F1 16 5 OS] (ST 10) OSSPSRt 44
setBeginIndex method and............cccueiiiiiiiiiie i 44p.
setEndIndex method and..............oocuiiiiiiiiiiie et as 44p.
INitParameterBeanMap.ccouiiieiiieiiieeciie ettt ettt e et e et eeenntrn e e e e ennnraaaaeens 63p.
INSTANCESELECTOTeeueieiiieiie ettt ettt et et e st e teesate e bt e sabe e seesateenseeeensaeeennsaeeas 40, S0p.
Internal FrameEvVentINVOKET........ccooiiiiiie ettt et e st e e e e e ennraeaeeens 92
FRAME ACTIVATED MASK.......iiiiiiiiiiiieiieeiteite ettt ettt ettt ettt e st e et e ssbeebeesnseeseesnnseaennes 92
FRAME CLOSED MASK....cuttttiiitiiiiitietieie ettt ettt ettt et et e bt et eaeeeeeeeneeeeneeennes 92
FRAME CLOSING MASK....ceitiiiiiiiiiieiieiie ettt ettt sttt ettt e sibe e s ntaeesnnseeesnnseeeennees 92
FRAME DEACTIVATED MASK.......ccciiiiiieiieiiieiieeie et eeieeeteeeteesbeesteeeveesseessseesssesssaessaessseesssessseens 92
FRAME DEICONIFIED MASK......ccctiiitiiiiiiiiiiiieeiieiie ettt ettt ettt e s eesnraeeennes 92
FRAME ICONIFIED MASK.......ciitiiiieiiitieieeiesieee ettt ettt sttt et et e e seeesseeneeeneeens 92
FRAME OPENED MASK......ciutiitiiiiiiiieiiiieeteet ettt ettt st sb et e s e e 92
INVOCAtIONEVENL.....uvviiiiiiiiiiiieeeee e et e e e e s et e e e e e e e e e e s b eeeeeaenens 18, 20
EHINVOCAIONTATZEL.......eeiiieiii ettt et ettt et e et e s et e enbeesseeenbeessaeenseesnsseeeennne 20
Fo LS8\ (11 T 1 OSSPSR 20
EEMEtNOAATZUIMENLS. ...ttt ettt et et e e bt e st eeteesateenbeessbesnsaesseeenseeesnseaennes 20
GELRETUIMIVAIUC......coiiiiieie e ettt e et e e et e e e ta e e s baeessaaeensseeesennnsaneeeeannes 20
LR EIUIMVAIUCTYPC. ...ttt et ettt e st e et esabeebeeenbeeeenseeeennees 20
RASRELUINIVALUE.ooiiiiiieiiiece et e et e et e et e e et eesnseeesnsaeeesseeenneaeeas 20
ISCANCRILEA. ...ttt et e et e st e st e et e e b e e ste st e esaeeensbeeeennbeeeennbeeeennes 20
INVOCAtIONLASTENETeeiiieeiie et e e e e e et eeeebeeennaee e ennnnes 5, 16, 18pp., 24p.
mMethodInvocatioNCaNCEIIEd..........cc.eiiiiiiiiiiieieee et ettt ebeeeenbeee e 18
MEthOAINVOCAtIONINOTICE. ...ecuviiieiiieeiiie ettt ettt e et e et e e abeeesbeeenaeeensaaeeeennnsseaaesannnns 18p.
METNOAINVOKE. ...ttt e ettt e e e s e e s et e e et eeeesssssataeseeeseeeeeaeaes 18, 20
HEMEVENTINVOKETcoiiiiieiiiecie ettt e et e et e e e aaeeessaeeeennssaeeesennssseeeaeannns 79p.
TEEMEVENE ANA......ceeiiiiiiiiee et ettt e et e tt e et e e s ateesbeessaesnbeesateenbeessaeeseenneeens 79
IEMEVENES QNG....c.iiiiiiiieciee e et e e st e e et e e st e e e enbeeessbeeessbeeennseeeeesnraeeaeans 79
KEYEVENINVOKET ..ottt ettt ettt et e et e et e s st e ebeeeabeesbeeeenbeeesnbeeennes 93
T (0|7 A LS o 10 Lo PO USSP SUR 93
KEY PRESSED MASK....c.utitiiiiiiiiiiiitee ettt sttt st 93
KEY RELEASED MASK....c.eiittiiiiiiiieiesiee ettt sttt ettt sttt eneenaeeemeeeenee 93
KEY TYPED MASK.....tittiiiiitiieiieetteteete sttt sttt et sttt ettt et et e st e st e e eaee 93
| QS BA Y= 1 LA 1 2 T PP SU USSR 93
1o) 2 21 L) U 1 Lo OO RPPSPRR 93
QT L ST (PRSPPI 9
ListSelectioNEVENtINVOKET.........cccuiiiiiiieiieie ettt ettt st e ettt e et e snbeeensaeeeans 81
ListSelectioNEVEnt and............coooiiieiiiiiiiece e et e e e eeenraeeaeeas 81
IMEtHOAEXECULOT.eeiieetieiie ettt ettt ettt et e et e et e e bt e eabeeseeenteesnbeeessseeeesseeennn 38, 48pp.
MethodInvoker........cceevveeeennnnnnn. 5, 7pp., 24p., 33, 49, 60, 65p., 73, 75pp., 81, 83pp., 88, 94pp., 99pp.
Function POINETs and...........cceiiiiiiiiiiiiiiiecieeieee ettt ettt et e et e s e e eesaeesneeeeneee 13
Handling variable arguments and..............cccviiiiiiiiiiieeoiiie ettt e eeae s 12

INIVOKE .ottt e e ettt e e e e e s ettt et e e e e e se s aba b et eee e e e e —t et eeeeeeaaaaaaaaaaaaaaaaaaaas 13,19

Multiple Parameter PaASSING........cc.eeiiiiiiiiiiieiiecie ettt ettt et e ettt ebeessaeeseesaaeenbeesnbeaeenes 10

Return Values and.........co.ooiiiiii et ettt ettt et et n 11
MOUSEEVENTINVOKET......coiiiiiiiiiiietie ettt ettt ettt e e bt e st e e seesabeebeesnseens 94pp.
0Ty ST 1A ' Lo PSSP 94p.
MOUSE CLICKED MASK......0titiiiiiiiiieiiieite ettt eite st eieeseteeteesteesaesateesseesnseesnseeesansaeesnnseeas 9%p.
MOUSE_ENTERED MASK......eiitiiiiiiiiiieieseieee ettt ettt et e e neeesneee e 94
MOUSE _EXITED MASK.....ccuttiitiitiiiiniieieeiteeitete ettt sttt st ettt sttt sttt et sbte e e e neeeenneeenaee 94
MOUSE _PRESSED MASK......ciitiiiiiiiiiieie ettt sttt s tee et eeneeeeneeennee 94
MOUSE _RELEASED MASK......ctiiiitiiiiiiieeeee ettt s st 94
1e10 3 (010N 010 A7 13 T ARSI 95
MOUSEMOtIONEVENTINVOKETc..eiiiieiieiiieiiecie ettt ettt ettt estaeebeeeenbeeeenneeeenneeas 96p.
INVOKEFOTEVENL.....ceiiiiiii ettt ettt e et e e et e e e 99
MOUSE DRAGGED......coiiiiiitiieteeeete ettt sttt sttt sttt e et e e b e eeee 96
MOUSE _MOVED.....cuiitiiiiiieeee ettt ettt ettt e st e sae et e es e aeenseeaseeenseeeneeeaneeenes 96
SELHOTSPOL AN, ettt ettt e st e e stbee e e nbbee e enbaeeeannaeeenn 96p.
setListenerAddRemoveMethOdINAMES.........cc.eoiiiiiiiiiiiiiee e e 99
NaMEAPTOPETtYBINAET.........eiiiiiiiieiiieiieie ettt ettt ettt e st e e sbte e eatbeeeensaeeesnsaeeensaeeas 71
NOSUChMEthOAEXCEPIION.ccuiiiiiieciiie et ettt st e e st e e snaaeeensraeaeeeennnneeas 100p.
NUMETICALA ZEICEALOTeeeiiieiieeiieeiie ettt ettt e et e st e et e esateebeessteenbeessseeseesaseenseessseensaesnseenseeas 38,53, 55
ODTUSCATION. ...ttt e b e h bttt e st e e bt e e a b e et e e sat e e bt e eabeeabeesabeesbbeeesnaeeas 101
OB USCALION. ...ttt ettt et b et a e s bt et e ea e s bt et e eat e e bt e beeatesabeesabeeenbeeeanees 101
PlT ..ttt ——1—_——————————————————11——————ssrrrriaaeeeseees 55, 56
PropertieSBEaNIMAP.coouiiiiiiiieiieette ettt ettt ettt ettt e b e bt e e e enneeas 62, 64
allowMap Method and...........c.cooiiiiiiiiici et s e et e e e et a e e e e nnnes 62
getValueFor Method and.............oooiiiiiiiiii et ettt st 62
(0015 4745 11 16) SRS 68pp.
PropertyChangeInVOKET.........c.ooiiiiiieiie ettt ettt e b e e e e enbeeeenes 67p.
setPropertyMatChPattern and...........c..oooviieiiieiiiie e e e e e raee e e e 67
SetShOWPTOPETtyNAMES ANd......c.uiiiiiiiiiiiieeieee ettt et ettt e st e e b e ssbeenseeeennees 68
(001 7 S 11 £ 0) S USSR 67p.
PrOPETEYILETALOTeeeiiieeiieeet ettt et e st e e st e e e st e e et e e ensbeesanbbeeeeeennnntaeeeas 51, 52
BeanService eXpreSSIONS ANd..........eieciieeiiieeiieeeiieeeieeesieeesteeesteeesaeeetaeeetaeeeaaeeenaaeeeeeennnaaaaeeeannnes 52
ProPerty ValUESEIECTOT ittt ettt ettt e e te et e s eessaeenbeensaee s 43p., 60
IS EQUAL Tttt ettt ettt ettt et st e bt et e e st e s st enteeseenseenteeneenseensesneenseenseens 44
IS GREATER THAN.... ittt ettt sttt eb e bttt et e et eenbeeenee 44
IS GREATER THAN OR _EQUAL TO..c.iiiiiiiiiieiieiesieeie ettt ettt 44
IS TN ettt e h e bbbt bttt e h bttt h bt e st bttt e et e eebeeenee 44
IS LESS THAN. ..ottt ettt ettt ettt e st e et e e atesse e b e e st e et enteeseeseenteeneesnbeesnseeenne 44
IS LESS THAN OR EQUAL TO..ioiitiiiiiiiiiiitee ettt sttt sttt st 44
IS NOT _EQUAL TOu...uiiiieiieiieteee ettt ettt ettt ettt ettt et e e seesteentesseenaeesnseeenneeenseeeneeennes 44
IS INOT TNttt ettt ettt e b et e h e bttt s bt e s bt et e e bt e b e et e sb e e bt enteesbteenabeenas 44
IS INOT INULL...iitieiteie sttt ettt et et e sttt e e st e teeatesaee st enseeseesseensesseenseenseeneenseensenseens 44
IS INULL ...ttt e h e bt et st b et eh e bt ea b e s bt et e ea b e ebte bt eatesaee bt enneenbaeens 44
IMATICHES ...ttt ettt ettt et e st e s bt et e eaeesaeenseeste st enseenseeeseeenseeeaneeennee 44
NOT _MATCHES. ...ttt ettt et a ettt sbe e bt et e bt e nbeeeabeeenbeeeaees 44
ST o4 <] (107 10) USSP 45
REZEX S CIECTON. ... ittt ettt ettt et e et e e bt e e et e e teeeat e e st e enbeeseesnseeseeenbeeseesnsaennns 45
RUNTMEEXCEPIION.eiiiiiiiitciie ettt eee e st e e et e e aee e aaeeeaseeessaeeensseesnseaesssneennseeennnnns 100

SECUTTEYIMANAZETeeiiieiiieeiie ettt ettt et e et e st e e bt esateeabeessaesateesseeenbeessbesaseesseeanseannsaeesanseaesanneeas 5, 87

SCLCOMPATEPTOPETTIES. ...uvieiieeiiieetie et ie ettt ettt et e st e et estte e bt e s tteebeesateesbeessbeenseesseeenseeennseeeennseeeennseeennnees 35

StINETOD AtECONVETITET vieeirieesiteeeiieeerieeeiteeetteeeteeeeteeesaeeesaseeessseeessseeesseeesseeesseesnsseesasssneaesannes 70p.
StrINETOD OUDIECONVEITET......cueieiieiiietieeiie ettt ettt et te et e st e e teesateebeessbeeseessbeenbeessseeessneaennes 69, 71
B8 (o 16 2 ST L1 0) UURURP 38, 47p.
RUNNADIE QNd......eiiiiiiiiiii ettt ettt sttt et e e 47
TRECAA ANA.......eeiii ettt et ettt e b e st e e bt e e st e e bt e sate e snbeeeeaes 47
TRIEAAULIIILYeovtiiieieiiee e e 9pp., 13p., 16, 18, 24,47, 49
GEETRICAACOUNL.eiieiiiieeiiee ettt e ettt e ettt eeta e e etteeessaeessbeeessseeeasseeeasseessseesnnssneeeesannnns 9
KIITRICAAS. ...ttt sb ettt b et e at e bttt e sttt eaeesbe e e e eaeee 9
53501, PSR RUSSPSR 5, 23pp
TAMEIEVENL......eiiiiiiiee ettt ettt et e et et e et e e bt e sabeenbeesaseenseassbeenseessseenseanssesnseenneaans 5,23p
000150 5T (11, RSP SSR 23pp
UL EVENE DEIEZALES.cuueieiiiiiiieiieeie ettt ettt ettt e st e et esabe e bt e sabeenbeesnseesensbeesansaeeeansneennns 73
VisualComponentEItOT..........c.ciiiiiiiiiie ettt e st e s e e s bee e s e eta e e e e e esnnaanaeeeens 83pp.

@Reflected aNNOTALION.iiiiiiiieiieeie ettt ettt e e et e et e s aaeeseesabeesbeessbeenseessseenseeeensreens 101

	Introduction
	Chapter 1 – Get going now!
	Primary Use Cases
	Using AsynchMethodInvoker
	Using MethodInvoker
	Using ThreadUtility
	Handling Multiple Parameter Passing
	Obtaining Return Values
	Dealing with Methods Receiving Variable Argument Lists
	Function Pointers
	Summary

	Chapter 2 – Additional Features of the DEF
	Canceling an Asynchronous Process
	Restarting an Asynchronous Process
	Using InvocationListener
	Creating a Dynamic Process
	Using Timer, TimerListener and TimerEvent
	Using AsynchMethodInvoker as a Timer
	Summary

	Chapter 3 – Beans Support
	Creating Instances
	Obtaining Simple Property Values
	Obtaining Non Bean-Compliant Values
	Obtaining Indexed Values – Values of Arrays or Lists
	Accessing Nested Values
	Using Expressions
	Other BeanService Methods
	Setting Property Values
	Using BeanComparator
	Using AnyObjectComparator
	Summary

	Chapter 4 – Collections Extensions
	Using CollectionComparator
	Using Collection Services
	CollectionSelector
	Using InstanceSelector
	EqualsSelector
	DifferenceSelector
	PropertyValueSelector
	IndexSelector
	RegexSelector
	CollectionExecutor
	ThreadExecutor
	MethodExecutor
	A Use Case for Combining Selectors and Executors
	Property Selectors and Iterators
	CollectionPropertySelector
	PropertyIterator
	Aggregators – The CollectionAggregator
	Pair
	CollectionUtility
	Summary

	Chapter 5 – Additional Beans Classes
	Index
	BeanIndexer
	BeanPropertyLoader
	BeanPropertyMap
	PropertiesBeanMap
	CookieBeanMap
	InitParameterBeanMap
	HttpRequestParameterBeanMap
	Summary

	Chapter 6 – Event Delegates
	Introduction
	AbstractEventInvoker
	PropertyEventInvoker
	PropertyBinder
	DataTypeConverter
	NamedPropertyBinder
	Summary

	Chapter 7 – UI Event Delegates
	Introduction
	ActionEventInvoker
	ChangeEventInvoker
	ItemEventInvoker
	ListSelectionEventInvoker
	AbstractMaskedEventInvoker
	ComponentEventInvoker
	ContainerEventInvoker
	FocusEventInvoker
	HyperlinkEventInvoker
	InternalFrameEventInvoker
	KeyEventInvoker
	MouseEventInvoker
	MouseMotionEventInvoker
	Extending AbstractEventInvoker and AbstractMaskedEventInvoker

	Chapter 8 – Things That Go Wrong
	Oops!
	Obfuscation

